一,原始问题
小青蛙面前有N阶台阶,他每次只能跳1阶或者2阶,问跳N阶台阶共有多少种跳法?
想必大家都知道这就是斐波那契额数列的变式。解法如下:
//
int func(int n)
{
if (n == 1 || n == 2)
return n;
else
return func(n - 1) + func(n - 2);
}
int main()
{
int n = 0;//n阶台阶
scanf("%d", &n);
int ret=func(n);
printf("ret=%d", ret);
return 0;
}
二,升级版
小青蛙面前有N阶台阶,他每次只能跳1阶或者2阶或者3阶,问跳N阶台阶共有多少种跳法?
这种情况与前者类似,就是,第n项等于第n-1项,n-2项,n-3项加和。解法如下:
//
int func(int n)
{
if (n == 1 || n == 2)
return n;
else if (n == 3)
return 4;
else
return func(n - 1) + func(n - 2) + func(n - 3);
}
int main()
{
int n = 0;//n阶台阶
scanf("%d", &n);
int ret=func(n);
printf("ret=%d", ret);
return 0;
}
三,豪华升级版
小青蛙面前有N阶台阶,他每次只能跳1阶或者2阶或者3阶…N阶,问跳N阶台阶共有多少种跳法?
这个问题的解法与前面两种就不那么紧密相关了,我们设求N阶台阶的方法为An种,Sn=A1+A2+…An.
由题意和前面两种情况的启发可以得出:An=S(n-1)+1;
所以我们的解法如下:
//
int sum(int n, char* arr)
{
int i = 1;
int sum = 0;
for (i = 1; i <= n; i++)
{
sum += func(i, arr);
}
return sum;
}
int func(int n,char* arr)
{
if (n == 1 || n == 2)
{
arr[n] = n;
return arr[n];
}
else
{
arr[n] = sum(n - 1, arr) + 1;
return arr[n];
}
}
int main()
{
int arr[100] = { 0 };
int n = 0;
scanf("%d", &n);
int ret=func(n,arr);
printf("ret=%d", ret);
return 0;
}
如果您在阅读中发现问题,欢迎在评论区讨论,谢谢