青蛙跳台阶问题的不断升级

一,原始问题

小青蛙面前有N阶台阶,他每次只能跳1阶或者2阶,问跳N阶台阶共有多少种跳法?
想必大家都知道这就是斐波那契额数列的变式。解法如下:

// 
int func(int n)
{
	if (n == 1 || n == 2)
		return n;
	else
		return func(n - 1) + func(n - 2);
}
int main()
{
	int n = 0;//n阶台阶
	scanf("%d", &n);
	int ret=func(n);
	printf("ret=%d", ret);
	return 0;
}

二,升级版

小青蛙面前有N阶台阶,他每次只能跳1阶或者2阶或者3阶,问跳N阶台阶共有多少种跳法?
这种情况与前者类似,就是,第n项等于第n-1项,n-2项,n-3项加和。解法如下:

// 
int func(int n)
{
	if (n == 1 || n == 2)
		return n;
	else if (n == 3)
		return 4;
	else
		return func(n - 1) + func(n - 2) + func(n - 3);
}
int main()
{
	int n = 0;//n阶台阶
	scanf("%d", &n);
	int ret=func(n);
	printf("ret=%d", ret);
	return 0;
}

三,豪华升级版

小青蛙面前有N阶台阶,他每次只能跳1阶或者2阶或者3阶…N阶,问跳N阶台阶共有多少种跳法?
这个问题的解法与前面两种就不那么紧密相关了,我们设求N阶台阶的方法为An种,Sn=A1+A2+…An.
由题意和前面两种情况的启发可以得出:An=S(n-1)+1;
所以我们的解法如下:

// 
int sum(int n, char* arr)
{
	int i = 1;
	int sum = 0;
	for (i = 1; i <= n; i++)
	{
		sum += func(i, arr);
	}
	return sum;
}
int func(int n,char* arr)
{
	if (n == 1 || n == 2)
	{
		arr[n] = n;
		return arr[n];
	}
	else
	{
		arr[n] = sum(n - 1, arr) + 1;
		return arr[n];
	}
}
int main()
{
	int arr[100] = { 0 };
	int n = 0;
	scanf("%d", &n);
	int ret=func(n,arr);
	printf("ret=%d", ret);
	return 0;
}

如果您在阅读中发现问题,欢迎在评论区讨论,谢谢

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大理寺j

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值