在机器学习领域,用户贷款风险预测是一个重要且具有挑战性的问题。预测借款人是否存在违约风险对于金融机构和贷款提供商来说至关重要。本文将介绍一个基于LightGBM(LGB)算法的用户贷款风险预测模型,并提供完整的代码和数据,以便读者可以直接运行。
首先,我们需要导入所需的库和模块。在这个示例中,我们将使用Pandas进行数据处理,Scikit-learn进行模型训练和评估,以及LightGBM作为我们的机器学习算法。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import lightgbm