华为matebook14+NVIDIA+CUDA+cuDNN+Anaconda3+Tensorflow-gpu+pycharm

本文记录了作者在华为MateBook14上安装NVIDIA、CUDA、cuDNN、Anaconda3、Tensorflow-gpu和PyCharm的过程,特别提到在安装Tensorflow-gpu时遇到的pip版本低、wrapt和mgpack问题的解决方法,最终成功运行Tensorflow-gpu。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

历时2天,不断试错,终于终于让Tensorflow-gpu能运行了!!!!!!!!!!!

下面把我的:华为matebook14+NVIDIA+CUDA+cuDNN+Anaconda3+Tensorflow-gpu+pycharm版本号记录一下,而安装过程参照这位大佬的总结(https://blog.csdn.net/qq_42772612/category_9795926.html

  1. NVIDIA:用的系统自带
  2. CUDA:10.0
  3. cuDNN:7.6(适配cuda-10.0的7.6版本)
  4. Anaconda3:5.2.0-Windows-x86_64
  5. Tensorflow-gpu:(管理员模式打开prompt)pip install tensorflow-gpu==2.0.0
  6. Pycharm:最新即可(community版本,毕竟专业的是要收费的)
<think>好的,用户的问题是解决无法从当前渠道获取tensorflow_estimator包的问题。首先,我需要回忆一下常见的Python包安装问题解决方法。可能的原因包括渠道配置错误、包名称不正确、网络问题或者需要特定版本。 首先,用户提到的错误是包未在当前的渠道中可用。根据引用[4],用户可能在使用Anaconda,并且配置了清华的镜像源。我需要检查是否tensorflow_estimator在默认的conda仓库中存在,或者是否需要更换其他渠道,比如conda-forge。 另外,引用[1]提到在模型迁移过程中遇到问题可以向华为的渠道求助,但这里的问题是关于包安装,可能需要更通用的解决方案。用户可能没有正确配置conda的渠道,或者需要添加包含tensorflow_estimator的特定渠道。例如,conda-forge通常有更多更新的包,可以尝试添加这个渠道。 还有一种可能性是用户需要安装的包名称可能有不同的拼写,或者需要指定版本号。例如,tensorflowtensorflow-estimator通常是配套使用的,可能需要安装对应版本的estimator。如果用户使用pip,可以指定镜像源,比如清华的pypi镜像,或者华为的镜像,如果可用的话。 另外,用户可能需要更新conda本身,或者清理缓存,因为有时候旧的缓存可能导致无法找到最新的包。还可以建议用户直接使用pip安装,如果conda不可用的话,因为有时候某些包在conda中更新较慢,但在PyPI上可能有最新版本。 总结下来,可能的解决步骤包括:1. 检查conda渠道配置,添加conda-forge;2. 使用pip安装并指定镜像源;3. 确保包名称和版本正确;4. 清理conda缓存;5. 混合使用conda和pip(需注意环境兼容性)。需要提醒用户注意依赖冲突的问题,尤其是在混合使用conda和pip时。 现在需要将这些步骤整理成结构清晰的回答,并参考提供的引用中的信息,比如引用[4]关于conda配置的内容,可能需要指导用户修改.condarc文件。同时,生成相关问题,比如如何配置conda镜像源,或者如何解决依赖冲突等。</think>### 解决tensorflow_estimator包不可用问题的方法 #### 1. 检查并切换Anaconda镜像源 如果当前渠道缺少`tensorflow_estimator`包,可能是因为默认镜像源未包含该包。参考引用[4]中的清华镜像配置,可修改`.condarc`文件如下: ```yaml channels: - conda-forge - defaults channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda ``` 运行命令更新源: ```bash conda clean -i # 清理缓存 conda update --all ``` #### 2. 通过conda-forge渠道安装 添加`conda-forge`渠道后尝试安装: ```bash conda install -c conda-forge tensorflow-estimator ``` #### 3. 使用pip指定镜像源安装 若conda仍无法解决,使用pip配合国内镜像源(如华为云或清华源): ```bash pip install tensorflow-estimator -i https://repo.huaweicloud.com/repository/pypi/simple # 或使用清华源 pip install tensorflow-estimator -i https://pypi.tuna.tsinghua.edu.cn/simple ``` #### 4. 指定版本安装 TensorFlow与Estimator版本需严格匹配。例如安装2.10.0版本: ```bash pip install tensorflow-estimator==2.10.0 ``` #### 5. 混合环境管理 若同时使用conda和pip,建议先通过conda创建独立环境: ```bash conda create -n tf_env python=3.8 conda activate tf_env pip install tensorflow tensorflow-estimator ``` ### 注意事项 - 避免在conda环境中混用pip和conda安装核心包,可能引发依赖冲突[^4] - 若需企业级支持,可参考引用[1]通过华为ModelZoo或昇腾社区反馈问题
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值