数据结构实验:连通分量个数(并查集)

这是一个关于数据结构实验的介绍,重点在于利用并查集算法来计算无向图中的连通分量个数。题目描述了在无向图中,连通性和连通分量的概念,并给出了样例输入和输出。实验要求处理多个测试样例,每个样例包含N个顶点和M条边,输出每个图的连通分量数量。
摘要由CSDN通过智能技术生成

数据结构实验:连通分量个数
Time Limit: 1000 ms Memory Limit: 65536 KiB

Problem Description
在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。

Input
第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。
Output
每行一个整数,连通分量个数。
Sample Input
2
3 1
1 2
3 2
3 2
1 2
Sample Output
2
1
Hint

Source
cz

#incl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值