Introduction to the Dataset
The Maple-IDS dataset is a network intrusion detection evaluation dataset designed to enhance the performance and reliability of anomaly-based Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). As cyber attacks become increasingly sophisticated, having a reliable and up-to-date dataset is crucial for testing and validating IDS and IPS solutions.
The dataset is released by the Network Security Laboratory of Northeast Forestry University and is available for free use and citation.
Laboratory website: Northeast Forestry University Network Security Laboratory
Background of the Dataset Release
Traditional evaluation datasets often suffer from outdated attack traffic and exploitation methods, insufficient traffic diversity, limited attack types, an