codevs-1043 方格取数

codevs-1043 方格取数
题目描述 Description
设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。

此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

这里写图片描述
输入描述 Input Description
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出描述 Output Description
只需输出一个整数,表示2条路径上取得的最大的和。

样例输入 Sample Input
      8
      2  3  13
      2  6   6
      3  5   7
      4  4  14
      5  2  21
      5  6   4
      6 3  15
      7 2  14
      0 0  0
样例输出 Sample Output
      67

题解:四维动归大法好(写起来太恶心,加了宏优化代码美观程度)

#include<iostream>
#define fr(x,a,y) for(int x=1;x<=a;x+=y)
#define f(a,b,c,d) f[a][b][c][d]
#define a(x,y) a[x][y]
using namespace std;
int n,a[12][12]={0},sumn=0;int f[20][20][20][20];
int main (){
    int x,y; cin>>n;
    do{cin>>x>>y;cin>>a(x,y);}while (x!=0);
    fr(i,n,1) fr(j,n,1)  fr(k,n,1)  fr(l,n,1){
    f(i,j,k,l)=max(max(f(i-1,j,k-1,l),f(i-1,j,k,l-1)),max(f(i,j-1,k-1,l),f(i,j-1,k,l-1)))+a(i,j)+a(k,l);
    if(i==k&&j==l) f[i][j][k][l]=f[i][j][k][l]-a[i][j]; }
    cout<<f(n,n,n,n); return 0;
}
ps.如果数据不那么水的话我这方法过不了
目前提供的引用内容并未提及关于 ABC303 题目的具体解答或解析。然而,可以从一般性的角度出发,探讨可能涉及的算法分析方法以及常见的解题思路。 ### 关于算法分析的目的 算法分析的主要目的是评估其性能并寻求改进的可能性[^1]。这通常涉及到时间复杂度和空间复杂度两方面的考量。对于任何题目而言,理解这两者之间的权衡关系至关重要。 ### 动态规划的应用场景 如果 ABC303 的题目属于优化类问题,则可以考虑采用动态规划的方法解决。动态规划的核心在于通过子问题分解的方式减少重复计算,从而提高效率[^2]。例如,在某些路径规划或者资源分配问题中,动态规划能够显著降低时间复杂度。 ### 特殊数值处理技巧 - 俄式乘法 当遇到需要高效完成大量数值运算的情况时,类似于俄式乘法这样的技术可能会被引入作为解决方案之一[^3]。尽管它看起来较为基础,但在特定条件下却能发挥重要作用。 ### 安全编码实践中的注意事项 最后值得注意的是,在实际编写代码过程中还需要关注安全性方面的要求。比如防止潜在漏洞利用等问题发生[^4]。 由于缺乏针对ABC303的具体描述信息,上述仅为基于现有资料所做的推测性讨论。 若要获得更精确的答案,请提供更多细节说明。 ```python # 示例伪代码展示如何应用动态规划解决问题 def dp_solution(input_data): memo = {} # 创建记忆表存储中间结果 def helper(subproblem): if subproblem not in memo: result = some_recursive_logic(subproblem) memo[subproblem] = result return memo[subproblem] final_result = helper(initial_state_of_problem) return final_result print(dp_solution(example_input)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值