洛谷 P1458 顺序的分数 Ordered Fractions

我写了两种方法:

第一种:(看的别人的)

某种奇怪的奇巧淫技

自己解释不清楚
手动模拟模拟就明白了

//P1458 顺序的分数 Ordered Fractions
//用了某种很迷的奇巧淫技
//2017.3.6

#include <iostream>
#include <cstdio>
using namespace std;

int n;

void f(int x1, int y1, int x2, int y2){   //x1 / y1 与 x2 / y2 
    int midx = x1 + x2, midy = y1 + y2;   //分子分母分别相加

    if (midy > n || midx > n) return ;

    f(x1, y1, midx, midy);
    printf("%d/%d\n", midx, midy);
    f(midx, midy, x2, y2);
} 

int main(){
    scanf("%d", &n);

    printf("0/1\n");

    f(0, 1, 1, 1); 

    printf("1/1\n");

    return 0;
} 

第二种:
枚举分子分母
只要满足互质就存下来
然后按从小到大的顺序排列
(要自定义sort中的cmp)

//P1458 顺序的分数 Ordered Fractions
//2017.3.7

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

const int MAXN = 162 * 162;
int n, m;
struct fraction{
    int x, y;
};
struct fraction p[MAXN];

int gcd(int x, int y){
    return y == 0 ? x : gcd(y, x % y);
}

/*
比较分数大小:通分
x1 / y1 < x2 / y2 ==> x1 * y2 < x2 * y1
*/ 
bool cmp(fraction a, fraction b){
    return a.x * b.y < b.x * a.y;
}

int main(){
    scanf("%d", &n);

    for (int i = 0; i <= n; i++)   //枚举分子i
        for (int j = i; j <= n; j++)   //枚举分母j (j一定大于i)
            if (gcd(i, j) == 1){
                p[m].x = i;
                p[m].y = j;
                m++;
            }

    sort(p, p + m, cmp);

    for (int i = 0; i < m; i++)
        printf("%d/%d\n", p[i].x, p[i].y);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值