我写了两种方法:
第一种:(看的别人的)
某种奇怪的奇巧淫技
自己解释不清楚
手动模拟模拟就明白了
//P1458 顺序的分数 Ordered Fractions
//用了某种很迷的奇巧淫技
//2017.3.6
#include <iostream>
#include <cstdio>
using namespace std;
int n;
void f(int x1, int y1, int x2, int y2){ //x1 / y1 与 x2 / y2
int midx = x1 + x2, midy = y1 + y2; //分子分母分别相加
if (midy > n || midx > n) return ;
f(x1, y1, midx, midy);
printf("%d/%d\n", midx, midy);
f(midx, midy, x2, y2);
}
int main(){
scanf("%d", &n);
printf("0/1\n");
f(0, 1, 1, 1);
printf("1/1\n");
return 0;
}
第二种:
先枚举分子分母
只要满足互质就存下来
然后按从小到大的顺序排列
(要自定义sort中的cmp)
//P1458 顺序的分数 Ordered Fractions
//2017.3.7
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 162 * 162;
int n, m;
struct fraction{
int x, y;
};
struct fraction p[MAXN];
int gcd(int x, int y){
return y == 0 ? x : gcd(y, x % y);
}
/*
比较分数大小:通分
x1 / y1 < x2 / y2 ==> x1 * y2 < x2 * y1
*/
bool cmp(fraction a, fraction b){
return a.x * b.y < b.x * a.y;
}
int main(){
scanf("%d", &n);
for (int i = 0; i <= n; i++) //枚举分子i
for (int j = i; j <= n; j++) //枚举分母j (j一定大于i)
if (gcd(i, j) == 1){
p[m].x = i;
p[m].y = j;
m++;
}
sort(p, p + m, cmp);
for (int i = 0; i < m; i++)
printf("%d/%d\n", p[i].x, p[i].y);
return 0;
}