本文介绍了基于 DolphinScheduler 的离线数据治理平台,解决了任务依赖黑洞和扩展性瓶颈问题。通过 YAML 动态编译和血缘自动捕获,实现了高效的任务依赖管理和数据追踪。平台使用 Neo4j 图数据库进行血缘存储,支持秒级影响分析和根因定位。此外,结合自研高性能导入工具,大幅提升数据传输效率。
背景与挑战
在日均处理PB级数据的背景下,原有调度系统面临两大核心问题:
- 任务依赖黑洞:跨系统任务(Hive/TiDB/StarRocks)依赖关系人工维护,故障排查耗时超30分钟
- 扩展性瓶颈:单点调度器无法支撑千级任务并发,失败重试机制缺失导致数据延迟率超5%
技术选型

核心架构设计

关键技术实现:
- YAML动态编译
type TaskDAG struct {
Nodes []Node `yaml:"nodes"`
Edges []Edge `yaml:"edges"`
}
func GenerateWorkflow(yamlPath string) (*ds.WorkflowDefine, error) {
data := os.ReadFile(yamlPath)
var dag TaskDAG
yaml.Unmarshal(data, &dag)
// 转换为DolphinSc

最低0.47元/天 解锁文章
908

被折叠的 条评论
为什么被折叠?



