一 分布式系统特点
现今互联网界,分布式系统和微服务架构盛行。业界著名的CAP理论也告诉我们,在设计和实现一个分布式系统时,需要将数据一致性、系统可用性和分区容忍性放在一起考虑。
1、CAP理论
在分布式系统中,一致性(Consistency)、可用性(Availability)和分区容忍性(Partition Tolerance)3 个要素最多只能同时满足两个,不可兼得。其中,分区容忍性又是不可或缺的。
-
一致性:分布式环境下多个节点的数据是否强一致。
-
可用性:分布式服务能一直保证可用状态。当用户发出一个请求后,服务能在有限时间内返回结果。
-
分区容忍性:特指对网络分区的容忍性。
举例:Cassandra、Dynamo 等,默认优先选择AP,弱化C;HBase、MongoDB 等,默认优先选择CP,弱化A。
2、BASE 理论
核心思想:
-
基本可用(Basically Available):指分布式系统在出现故障时,允许损失部分的可用性来保证核心可用。
-
软状态(Soft State):指允许分布式系统存在中间状态,该中间状态不会影响到系统的整体可用性。
-
最终一致性(Eventual Consistency):指分布式系统中的所有副本数据经过一定时间后,最终能够达到一致的状态。
二 一致性模型
数据的一致性模型可以分成以下 3 类:
-
强一致性:数据更新成功后,任意时刻所有副本中的数据都是一致的,一般采用同步的方式实现。
-
弱一致性:数据更新成功后,系统不承诺立即可以读到最新写入的值,也不承诺具体多久之后可以读到。
-
最终一致性:弱一致性的一种形式,数据更新成功后,系统不承诺立即可以返回最新写入的值,但是保证最终会返回上一次更新操作的值。
分布式系统数据的强一致性、弱一致性和最终一致性可以通过Quorum NRW算法分析。
三 分布式事务
分布式事务的目的是保障分布式存储中数据一致性