基于机器学习的个性化推荐算法的研究

本文探讨了机器学习在个性化推荐算法中的应用,包括基于内容推荐、协同过滤算法和逻辑回归、梯度迭代决策树、因子分解机以及卷积神经网络等技术。推荐系统在电商、音乐、电影等领域取得显著成效,通过发现潜在用户、提升点击率和用户满意度,对企业销售和用户体验产生积极影响。未来推荐系统仍需解决诸多挑战并不断优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于 机器学习 的个性化推荐算法的研究


摘要:

如今互联网发展 十分迅速,每天产生的数据量一直在增加,传统的搜索引擎已经不能够适用当前的需求,推荐系统已经成为互联网时代的新宠儿。它已经发展成为一门跨学科的学科,以应对海量数据带来的挑战,并为用户提供更好的体验。推荐系统算法一般来说,包括机器学习算法,云计算的广泛应用也使得机器学习算法能够快速部署和运行,为推荐系统的性能和效果提供了保障。
关键词:机器学习;个性化推荐;算法

Abstract:

Nowadays the Internet is developing rapidly and the amount of data generated every day has been increasing. The traditional search engine can no longer adapt to the current needs. Recommendation system has become the new darling of the Internet era. It has developed into an interdisciplinary discipline to meet the challenges posed by massive data and to provide users with a better experience. Generally speaking, recommendation system algorithms, including machine learning algorithms, cloud computing is also widely used to enable the rapid deployment and operation of machine le

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值