1.SVM作用
对于给定的训练样本集D={(x1,y1), (x2,y2),… (xn,yn)},yi属于{-1,+1},希望能找出一个超平面,把不同类别的数据集分开,对于线性可分的数据集来说,这样的超平面有无穷多个,而最优的超平面即是分隔间距最大的中间那个超平面
2.硬间隔最大化
对于以上的KKT条件可以看出,对于任意的训练样本总有ai=0或者yif(xi) - 1=0即yif(xi) = 1
1)当ai=0时,代入最终的模型可得:f(x)=b,即所有的样本对模型没有贡献
2)当ai>=0,则必有yif(xi) = 1,注意这个表达式,代表的是所对应的样本刚好位于最大间隔边界上,是一个支持向量,这就引出一个SVM的重要性质:训练完成后,大部分的训练样本都不需要保留,最终的模型仅与支持向量有关。
关于对偶问题
- 转化为对偶问题