前 n 项求和
-
算法思路:
1、前n项求和由于第一项和最后一项都已知适合用for循环。
2、当n趋于无穷时,调和数列的极限趋于无穷。 -
代码如下:
#include<stdio.h>
int main()
{
int i;
int n;
double sum=0;
scanf("%d",&n);
for(i=1;i<=n;i++){
sum+=1.0/i;
}
printf("f(%d) is %f\n",n,sum);
return 0;
}
代码输出:
50
f(50) is 4.479205
--------------------------------
Process exited after 9.289 seconds with return value 0
请按任意键继续. . .
代码分析:
这里需要留意的就是当被除数为浮点型数据、除数为整形数据时,结果自动转换为浮点型数据;浮点型数据(float、double)均用%f表示。
前 n 项求和变式运算
#include<stdio.h>
int main()
{
int i;
int n;
double sum=0.0;
double sign=1.0;
scanf("%d",&n);
for(i=1;i<=n;i++){
sum+=sign*1.0/i;
sign=-sign;
}
printf("f(%d) is %f\n",n,sum);
return 0;
}
代码输出:
10
f(10) is 0.745635
--------------------------------
Process exited after 1.927 seconds with return value 0
请按任意键继续. . .
代码分析:
这里对偶数项为负号采取的是置换前一项负号,没有用-1的n次方进行表达,比较简洁。
调和数列简介: