图的邻接矩阵、邻接表存储和图的广度优先搜索(BFS)、深度优先搜索(DFS)

图的邻接矩阵、邻接表存储和图的广度优先搜索(BFS)、深度优先搜索(DFS)

本文将先介绍图的存储方式:邻接矩阵和邻接表,接着介绍图的基本算法:广度优先搜索和深度优先搜索。

图及其存储方式

图是一种非线性的数据结构。在图论中,图是一种数学结构,用来表示一组对象,这些对象之间有一些成对的关系。对象可以包含任意信息,例如单个值、某段代码或公司员工的姓名,具体取决于图的用途。

这里我们尽可能简单地用一个字母标识每个对象,将图中对象称为顶点(vertices),对象间关系称为边(edges)。使用 G = ( V , E ) G = (V,E) G=(V,E) 描述顶点V 和边E 的集合,顶点V 的个数为 n = ∣ V ∣ n = |V| n=V,边的个数 m = ∣ E ∣ m = |E| m=E

边用于描述顶点的移动,这种移动称为路径,边可以是有方向的,也可以是无方向的。也就是说,通过多个顶点到顶点的边,可能从顶点y到达顶点v。图中y到v的路径可以记为: y   ∗ → G   v _y \ \underrightarrow{*}_G\ {_v} y  G v 。图可以有一个根节点r,表示图的起点,这时候图记为 G = ( V , E , r ) G=(V,E,r) G=(V,E,r)
在这里插入图片描述

  • (Degree):在无向图中,用于表示一个顶点有多少条边。在有向图中,又把度分为入度(In-Degree)和出度(Out-Degree)。
  • 入度:表示有多少条边指向一个顶点
  • 出度:表示有多少条边从这个顶点指向其他顶点。

一般会使用邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)两种方式存储图。
在这里插入图片描述

  • 邻接矩阵:邻接矩阵是一种比较直观的存储方式,使用一个二维数组 Adj[i][j] 。对于无向图,若顶点 i 和 j 之间存在边,则 Adj[i][j] 和 Adj[j][i] 的值为 1;对于有向图,若顶点 i 和 j 之间存在由顶点 i 指向 j 的边,则 Adj[i][j] 的值为 1。若图的边有权值,则数组中存入权值即可。
  • 邻接表:使用链表数组 Adj[N] 来存储,每个顶点使用一个链表,数组大小 N 为顶点个数。Adj[u] 表示所有和顶点 u 相连的节点。

在这里插入图片描述

这里直接使用算法导论上的原图。邻接矩阵和连接表的优缺点也非常明显。邻接矩阵的优点是比较直观,两个顶点的关系比较容易计算,缺点是比较浪费存储空间,尤其对于稀疏图。而邻接表的优点是比较节省存储空间,而缺点是两个顶点的关系计算相对比较困难一些。实际应用需要根据场景和需求选择合适的存储方式。

邻接矩阵存储的参考代码:

#define MaxVertexNum 10
typedef char VertexType;
typedef int EdgeType;

typedef struct
{
    VertexType vertex[MaxVertexNum];
    EdgeType edge[MaxVertexNum][MaxVertexNum];
    int vexnum, edgenum;
} AdjMatGraph;

邻接表参考代码:

#define MaxVertexNum 100
typedef char VertexType;
typedef int EdgeType;

typedef struct Edge{
	int adjvex;	        //边指向的顶点的位下标
	EdgeType weight;    //权值
	struct Edge *next;	//指向下一个邻接点
}Edge;

typedef struct Vertex{
	VertexType value;  //顶点信息
	Edge *firstedge;   //边指针
}Vertex, AdjList[MaxVertexNum];

typedef struct{
	AdjList adjList;
	int vexnum, edgenum;
}AdjListGraph;

如果你的图没有权值,顶点信息比较简单,也可以直接使用 C++ 的 vector 表示:

std::vector<std::vector<int>> graph;

广度优先搜索

广度优先搜索(BFS:Breadth-first search)是从源节点到达所有节点,并且从已发现节点搜索未发现节点的时候,始终是从已发现节点的广度方向展开,这优点类似树的层次遍历。BFS 算法生成以源节点 s 到达所有节点 v 的一棵广度优先搜索树。
在这里插入图片描述
借助队列,BFS 算法流程如上图所示。以邻接表存储为例,给出 BFS 的算法:

bool visited[MaxVertexNum];
void BFS(const AdjListGraph& g) {
    for (int i = 0; i < g.vexnum; i++) {
        visited[i] = false;
    }
    queue<int> q;
    for (int i = 0; i < g.vexnum; i++) {  // 防止存在非联通子图
        if (!visited[i]) {
            visited[i] = true;
            // visit
            cout << g.adjList[i].value;
            q.push(i);
            while (!q.empty()) {
                int u = q.front();
                q.pop();
                for (Edge* edge = g.adjList[u].firstedge; edge != nullptr; edge = edge->next) {
                    if (!visited[edge->adjvex]) {
                        // visit
                        cout << g.adjList[edge->adjvex].value;
                        visited[edge->adjvex] = true;
                        q.push(edge->adjvex);
                    }
                }
            }
        }
    }
    cout << endl;
}

深度优先搜索

深度优先搜索(DFS:Depth-first search)尽可能深地搜索一个图。首先访问其实一个起始节点 v,然后访问 v 的一个邻接节点 w, 接着 w 的邻接节点。重复上述过程,当无法继续访问时,则回退到最近访问的节点,继续上述过程,直到所有节点都被访问过。

DFS 算法的递归方式比较简单:

bool visited[MaxVertexNum];
void dfs(const AdjListGraph& g, int u) {
    // visit
    cout << g.adjList[u].value;
    visited[u] = true;
    for (Edge* edge = g.adjList[u].firstedge; edge != nullptr; edge = edge->next) {
        if (!visited[edge->adjvex]) {
            dfs(g, edge->adjvex);
        }
        
    }
}
void DFS(const AdjListGraph& g) {
    for (int i = 0; i < g.vexnum; i++) {
        visited[i] = false;
    }
    for (int i = 0; i < g.vexnum; i++) { // 防止存在非联通子图
        if (!visited[i]) {
            dfs(g, i);
        }
    }
}

最后,附上本文源码,方便大家验证。

#include<iostream>
#include<queue>
#include<memory>

using namespace std;

#define MaxVertexNum 100
typedef char VertexType;
typedef int EdgeType;

typedef struct Edge{
	int adjvex;	        //边指向的顶点的位下标
	// EdgeType weight;    //权值
	struct Edge *next;	//指向下一个邻接点
}Edge;

typedef struct Vertex{
	VertexType value;  //顶点信息
	Edge *firstedge;   //边指针
}Vertex, AdjList[MaxVertexNum];

typedef struct{
	AdjList adjList;
	int vexnum, edgenum;
}AdjListGraph;

// lookup index of vertex u in the graph
int LocateVex(const AdjListGraph& g, VertexType u)
{
    int i;
    for(i = 0; i < g.vexnum; ++i)
        if(u == g.adjList[i].value)
        {
            return i;
        }
            
    return -1;
}

void printGraph(const AdjListGraph& g)
{
    for(int i = 0; i < g.vexnum; i++)
    {
        cout << g.adjList[i].value;
        Edge* edge = g.adjList[i].firstedge;
        while(edge != nullptr)
        {
            cout << "->" << g.adjList[edge->adjvex].value;
            edge = edge->next;
        }
        cout << endl;
    }
}

void deleteGraph(AdjListGraph& g) {
    // TODO
}

void createGraph(AdjListGraph &g) {
    cout << "Enter vertex num: ";
    cin >> g.vexnum;
    cout << "Enter edge num: ";
    cin >> g.edgenum;
    
    cout << "Enter " << g.vexnum << " vertex value: ";
    for (int i = 0; i < g.vexnum; i++) {
        cin >> g.adjList[i].value;
        g.adjList[i].firstedge = nullptr;
    }
    
    cout << "Enter" << g.edgenum << " edge info:" << endl; 
    for (int e = 0; e < g.edgenum; e++) {
        VertexType v1, v2;
        cin >> v1 >> v2;
        int i = LocateVex(g, v1);
        int j = LocateVex(g, v2);
        if (i == -1 || j == -1) {
            cout << "Error edge info" << endl;
        }
        
        Edge* e1 = new Edge();
        e1->adjvex = j;
        e1->next = g.adjList[i].firstedge;
        g.adjList[i].firstedge = e1;
        
        Edge* e2 = new Edge();
        e2->adjvex = i;
        e2->next = g.adjList[j].firstedge;
        g.adjList[j].firstedge = e2;       
    }
}


bool visited[MaxVertexNum];
void BFS(const AdjListGraph& g) {
    for (int i = 0; i < g.vexnum; i++) {
        visited[i] = false;
    }
    queue<int> q;
    for (int i = 0; i < g.vexnum; i++) {
        if (!visited[i]) {
            visited[i] = true;
            // visit
            cout << g.adjList[i].value;
            q.push(i);
            while (!q.empty()) {
                int u = q.front();
                q.pop();
                for (Edge* edge = g.adjList[u].firstedge; edge != nullptr; edge = edge->next) {
                    if (!visited[edge->adjvex]) {
                        // visit
                        cout << g.adjList[edge->adjvex].value;
                        visited[edge->adjvex] = true;
                        q.push(edge->adjvex);
                    }
                }
            }
        }
    }
    cout << endl;
}

void dfs(const AdjListGraph& g, int u) {
    // visit
    cout << g.adjList[u].value;
    visited[u] = true;
    for (Edge* edge = g.adjList[u].firstedge; edge != nullptr; edge = edge->next) {
        if (!visited[edge->adjvex]) {
            dfs(g, edge->adjvex);
        }
        
    }
}

void DFS(const AdjListGraph& g) {
    for (int i = 0; i < g.vexnum; i++) {
        visited[i] = false;
    }
    for (int i = 0; i < g.vexnum; i++) {
        if (!visited[i]) {
            dfs(g, i);
        }
    }
}

int main () {
    AdjListGraph g;
    createGraph(g);
    printGraph(g);
    BFS(g);
    DFS(g);
    deleteGraph(g);
}

reference:

  • 算法导论
  • https://blog.51cto.com/u_15346415/3674106
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值