Codeforces Gym 100825 B. Delete This! (枚举 + 三分)

1 篇文章 0 订阅

Problem

对于给定的若干需删除的桌面图标坐标及不应删除的桌面图标坐标(均为左上角点坐标),求最少图标移动个数,使得可以通过一个矩形框将所有应删除图标选中,同时不能包括应保留的图标(矩形框的范围不能超过桌面坐标)。

限制条件

桌面大小 nr×nc 1nr,nc10000

应删除图标 n 个,保留图标 m 个, n+m100

每个图标的大小为 15×9

解题思路

提前将超出桌面边界的应删除图标标记,并直接作为必须移动的。

对其余图标进行预处理出二维前缀和(分应删除和不应删除的)。

枚举矩形框上边界、左边界、右边界,三分处理下边界的位置使得移动个数最少。

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 100 + 10;
int nr, nc, n, m, x[N], y[N], nx, ny, delta;
int mb[N][N], mw[N][N];
int l, r, u, ans = N;
set<int> sx, sy;
struct Node {
    int x, y;
} b[110], w[110];
int calc(int d) { 
    int outBlack = n - (mb[r][u] - mb[r][d-1] - mb[l-1][u] + mb[l-1][d-1]);
    int inWhite = mw[r][u] - mw[r][d-1] - mw[l-1][u] + mw[l-1][d-1];
    ans = min(ans, outBlack+inWhite);
    return outBlack + inWhite;
} 
int solve(int maxU) {
    int L = 1, R = maxU+1, mid, midmid, midv, midmidv;
    while(L < R) {
        mid = (L+R) / 2;
        midmid = (mid + R) / 2;
        midv = calc(mid);
        midmidv = calc(midmid);
        if(midv <= midmidv)
            R = midmid;
        else    L = mid;
    }
    return L;
}
int main()
{
    scanf("%d %d %d %d", &nr, &nc, &n, &m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d %d", &b[i].y, &b[i].x);
        if(b[i].x > nc - 4 || b[i].y > nr - 8)  delta++,    i--, n--;
        sx.insert(b[i].x);
        sy.insert(b[i].y);
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%d %d", &w[i].y, &w[i].x);
        sx.insert(w[i].x);
        sy.insert(w[i].y);
    }   

    for(set<int>::iterator it=sx.begin();it!=sx.end();it++)
        x[++nx] = *it;
    for(set<int>::iterator it=sy.begin();it!=sy.end();it++)
        y[++ny] = *it;

    x[nx+1] = nr;
    y[ny+1] = nc;

    for(int i=1;i<=n;i++)
        mb[lower_bound(x+1, x+nx+1, b[i].x) - x][lower_bound(y+1, y+ny+1, b[i].y) - y]++;
    for(int i=1;i<=m;i++)
        mw[lower_bound(x+1, x+nx+1, w[i].x) - x][lower_bound(y+1, y+ny+1, w[i].y) - y]++;

    for(int i=1;i<=nx;i++)
    {
        for(int j=1;j<=ny;j++)
            mb[i][j] += mb[i][j-1] + mb[i-1][j] - mb[i-1][j-1],
            mw[i][j] += mw[i][j-1] + mw[i-1][j] - mw[i-1][j-1]; 
    }

    for(l=1;l<=nx;l++)
        for(r=l;r<=nx;r++)
            for(u=1;u<=ny;u++)
                solve(u);
    printf("%d\n", ans+delta);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值