目录
1 字符串类型(掌握) String=String 例如:s1="aaa"
2 散列类型(了解) String=hash 例如:s2=key:value
3 列表类型(了解) Stirng=list 例如:s3=a,a,b,b,c,d
4 集合类型(了解) String=set 例如:s4=a,c,d,b
5 有序集合类型(了解) String=zset 例如: s5=a,b,c,d
2. 思考 :master如何得知salve是第一次来连接的?
Redis介绍
Redis是用C语言开发的一个 开源的 高性能 键值对(key-value)内存数据库
Redis五种数据类型
字符串,散列,列表,集合,有序集合
1 字符串类型(掌握) String=String 例如:s1="aaa"
设置
set key value
获取
get key
删除
del key
2 散列类型(了解) String=hash 例如:s2=key:value
设置单个
hset key subkey subvalue :设置一个键值对
获取单个
hget key subkey:获取一个子键的值
设置多个
hmset key subkey1 subvalue1 subkey2 subvalue2 ...:设置多个键值对
获取多个
hmget key subkey1 subkey2...:获取多个子键的值
获取所有属性以属性值
hgetall key:获取指定key值的所有信息
删除-子键
hdel key subkey1 subkey2 ...
删除
del key
3 列表类型(了解) Stirng=list 例如:s3=a,a,b,b,c,d
两端的设置:
lpush key member1 member2.. : 往左边开始插入
例如:lpush l1 a b c d d,c,b,a
rpush key member1 member2.. :往右边开始插入
例如:rpush l1 a b c d a,b,c,d
lrange key startindex endindex:查看 例如:lrange key 0 -1 :全查
两端的删除:
lpop key :左边弹出一个
rpop key :右边弹出一个
4 集合类型(了解) String=set 例如:s4=a,c,d,b
sadd key member1 member2 :设置
srem key member1 member2 :删除
smembers key :查看
5 有序集合类型(了解) String=zset 例如: s5=a,b,c,d
zadd key score1 value1 score2 value2...: 设置添加
zrem key value1 value2... :删除指定成员
zcard key :展示元素的长度
zscore key value :获取成员的数字
redis通用操作
1 keys *:查询所有的key
2 exists key:判断是否有指定的key 若有返回1,否则返回0
3 rename key 新key:重命名
4 type key:判断一个key的类型
5 del key :删除
一、单点Redis的问题
1.1 数据丢失问题
Redis是内存存储,服务重启可能会丢失数据。
1.2 并发能力问题
单点Redis并发能力虽然不错,但是也无法满足如6.18,11.11这样的高并发场景。
1.3 故障回复问题
如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段。
1.4 存储能力问题
Redis基于内存,单节点能存储的数据量难以满足海量数据需求。
二、问题解决
2.1 数据丢失问题解决方案
Redis有两种持久化方案:
2.1.1 RDB持久化
RDB(Redis Database Backup file)Redis数据备份文件,也被叫做Redis数据快照。简单的来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,回复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
1. RDB持久化执行时机,在以下四种情况下执行
- 执行save命令
- 执行bgsave命令
- Redis停机时(shutdown命令关机)
Redis停机时汇之星一次save命令,实现RDB持久化。
- 触发RDB条件时
Redis内部有触发RDB的机制,可以在redis.conf文件中找到。
格式:
# 900s内,如果至少有1个key被修改,则执行bgsave,如果是save "",则表示禁用RDB
save 900 1
# 900s内,如果至少有10000个key被修改,则执行bgsave,如果是save "",则表示禁用RDB
save 900 10000
弊端:898s有10000个key被修改了,但是此时突然断电了,是无法保存的。
#在redis.conf文件中也可以配置如下配置
#1.是否压缩,建议不开启,压缩会消耗cpu
rbdcompression no
#2.RDB文件名称
dbfilename dunp.rdb
#3.文件保存的路径目录
dir ./
2. 思考 save和bgsave有什么区别
save命令是被主进程执行RDB,在此过程中其他命令都会被阻塞。只有在数据迁移时可能用到。
bgsave命令是被独立进程完成RDB,主进程可以持续处理用户请求,不受影响。
3. RDB原理
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork之后读取内存数据并写入RDB文件
fork采用的是copy-on-write技术:
- 当主进程执行读操作时,访问共享内存。
- 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
3. RDB缺点
- RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
- fork子进程、压缩、写出RDB文件都比较耗时
2.1.2 AOF持久化
AOF(Append Only File )追加文件。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
1. AOF配置
AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:
#表示每执行一次写命令,立即记录到AOF文件 1281行
appendonly yes
#AOF文件的名称 1256行
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配置
#表示每执行一次写命令,立即记录到AOF文件 1281行
appendfsync always
#写命令执行完先放入AOF缓冲区,然后表示每隔1S将缓冲区数据写到AOF文件,也是默认的方案
appendfsync everysec
#写命令执行完先放入AOF缓冲区,由操作系统决定如何将缓冲区内容写回磁盘。
appendfsync no
配置项 | 刷新时机 | 优点 | 缺点 |
Always | 同步刷新 | 可靠性高,几乎不丢失数据 | 性能影响大 |
everysec | 每秒刷新 | 性能适中 | 最多丢失1秒数据 |
no | 操作系统控制 | 性能最好 | 可靠性较差,可能丢失大量的数据 |
2. AOF文件重写
因为AOF记录的是命令,AOF文件会比RDB文件大得多。而且AOF会记录同一个key的多次写操作,但是只有最后一个操作才有意义。通过执行bgrewrite命令,可以让AOF文件执行重写功能,用最少的命令达到相同的效果。
Redis也会在触发阈值时自动去重写AOF文件。阈值也可在redis.conf中配置。
bgrewriteaof
bgrewriteaof
#AOF文件比上次文件增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
#Aof文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
2.1.3 RDB与AOF对比
RDB和AOF各有自己的优缺点,如果对数据安全性较高,在实际开发中两者往往结合使用
RDB | AOF | |
持久化方式 | 定时对整个内存做快照 | 记录每一次执行的命令 |
数据完整性 | 不完整,两次备份之间会丢失 | 相对完整 |
文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 |
宕机恢复速度 | 很快 | 慢 |
数据恢复优先级 | 低、因为数据完整性不如AOF | 高,因为数据完整性更高 |
系统资源占用 | 高,大量CPU和内存消耗 | 低,主要是磁盘IO资源, 但是AOF重写时会占用大量 的CPU和内存资源 |
使用场景 | 对数据安全性要求低,可以接受 数分钟的数据丢失,追求更快的 启动速度 | 对数据安全性要求较高 |
2.2 并发能力问题的解决
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力就需要单间主从集群,实现读写分离。
Redis集群分为三种方式
- 主从集群
- 哨兵集群
- 分片集群
2.2.1 Redis主从集群
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。
1. 主从数据同步原理
全量同步:
主从第一次建立连接时,会执行去全量同步,将master节点的所有数据都拷贝给slave节点。
流程如下图所示
完整流程描述:
-
slave节点请求增量同步
-
master节点判断replid,发现不一致,拒绝增量同步
-
master将完整内存数据生成RDB,发送RDB到slave
-
slave清空本地数据,加载master的RDB
-
master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
-
slave执行接收到的命令,保持与master之间的同步
2. 思考 :master如何得知salve是第一次来连接的?
首先需要了解几个概念:
Replication Id | 简称replid,是数据集的标记,replid一致说明是同一数据集。 每一个master都有唯一的replid,slave则会继承master节点的replid |
offset | 偏移量,随着记录在repl_baklog中的数据增多而主键增大, slave完成同步时也会记录当前同步的offset。 如果slave的offset小于master的offset,说明slave的数据落后于master,需要更新。 |
因此slave做同步数据,必须向master声明自己的replication id和offset,master才可以判断到底需要那些同步数据。
因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接的时候,发送的offset和replid是自己的offset和replid。master如果判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。master会将自己的replid和offset都发送给这个slave,slave保存这些信息,以后slave的replid与master就一致了
因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致。
2.1增量同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步。
什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:
思考: master怎么知道slave与自己的数据差异在哪里呢?
这就要说到全量同步时的repl_baklog文件了。
这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
直到数组被填满:
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
注意:repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致 尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。
总结:
简述全量同步和增量同步区别?
-
全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
-
增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
-
slave节点第一次连接master节点时
-
slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
-
slave节点断开又恢复,并且在repl_baklog中能找到offset时
2.2.2 Redis哨兵集群
Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。
哨兵的作用如下:
-
监控:Sentinel 会不断检查您的master和slave是否按预期工作
-
自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
-
通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
集群监控原理
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
•主观( subjective )下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
•客观(objective)下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
集群故障恢复原理
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
-
首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
-
然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
-
如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
-
最后是判断slave节点的运行id(run_id)大小,越小优先级越高。
当选出一个新的master后,该如何实现切换呢?
流程如下:
-
sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
-
sentinel给所有其它slave发送slaveof 192.168.85.143 7003 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
-
最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
小结
Sentinel的三个作用是什么?
-
监控
-
故障转移
-
通知
Sentinel如何判断一个redis实例是否健康?
-
每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线
-
如果大多数sentinel都认为实例主观下线,则判定服务下线
故障转移步骤有哪些?
-
首先选定一个slave作为新的master,执行slaveof no one
-
然后让所有节点都执行slaveof 新master
-
修改故障节点配置,添加slaveof 新master
2.2.3 Redis分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
-
海量数据存储问题
-
高并发写的问题
使用分片集群可以解决上述问题,如图:
分片集群特征:
-
集群中有多个master,每个master保存不同数据
-
每个master都可以有多个slave节点
-
master之间通过ping监测彼此健康状态
-
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
三、 雪崩、击穿以及穿透问题
雪崩:Redis中的数据同时失效向Redis中存放数据的时候,都要设置失效时间,两个小时,刚好过期,大量的请求过来,直接访问到数据库中
解决方案:失效的时间做成随机数据
击穿:高频访问同一条数据,这条数据Redis没有,MySQL有
解决方案:在Redis中设置Null
穿透:大量数据Redis没有,MySQL也没有
解决方案:在Redis中设置为Null,布隆过滤器
布隆过滤器(BloomFilter):
Bloom filter是由Howard Bloom在1970年提出的二进制向量数据结构,它具有空间和时间效率,被用来检测一个元素是不是集合中的一个成员。如果检测结果为是,该元素不一定在集合中;但如果检测结果为否,该元素一定不在集合中。因此Bloom filter具有100%的召回率。这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率和时间以节省空间。
计算方法
如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链表、树都是基于这种思路,当集合内元素个数的变大,我们需要的空间和时间都线性变大,检索速度也越来越慢。 Bloom filter 采用的是哈希函数的方法,将一个元素映射到一个 m 长度的阵列上的一个点,当这个点是 1 时,那么这个元素在集合内,反之则不在集合内。这个方法的缺点就是当检测的元素很多的时候可能有冲突,解决方法就是使用 k 个哈希 函数对应 k 个点,如果所有点都是 1 的话,那么元素在集合内,如果有 0 的话,元素则不在集合内。
Bloom过滤器最大的问题是有误判率False Positives,这种误判率是避免不了的,但是尽可能的降低!!
优化方法: 可以将数组的长度和hash函数的个数尽量加大。
计算方法:
应用场景:商品查询
问题:如果一直不停的查询ID大于10000的商品,那么就会一直查询MySQL数据库,尽管查不到,但是也在消耗MySQL的资源,这就是典型的缓存穿透现象,那么应该怎么解决呢?
可以使用Bloom Filter
Bloom Filter具体实现
1、Google的guava框架实现了BloomFilter
2、Redis中也实现了BloomFilter