c++优先队列(priority_queue)用法+codeup 21142 合并果子解法

本文介绍优先队列的特性和实现方式,重点讲解如何利用小顶堆(升序队列)解决合并果子问题。优先队列基于堆实现,支持emplace原地构造元素并插入队列。通过实例演示了小顶堆在处理多元素合并问题中的应用。

优先队列具有队列的所有特性,包括队列的基本操作,只是在这基础上添加了内部的一个排序,它本质是一个堆实现的。

emplace 原地构造一个元素并插入队列。

定义优先队列:priority_queue<Type, Container, Functional>
Type 就是数据类型,Container 就是容器类型(Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector),Functional 就是比较的方式。
当需要用自定义的数据类型时才需要传入这三个参数,使用基本数据类型时,只需要传入数据类型,默认是大顶堆。

//升序队列(小顶堆)
priority_queue <int,vector<int>,greater<int> > q;
//降序队列(大顶堆)
priority_queue <int,vector<int>,less<int> >q;

//greater和less是std实现的两个仿函数(就是使一个类的使用看上去像一个函数。其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了)

题目链接:合并果子
题解:

#include<bits/stdc++.h>
using namespace std;
priority_queue<long long,vector<long long>,greater<long long>> q;//小顶堆
int main(){
	int n;
	long long temp,x,y,ans=0;
	scanf("%d",&n);
	for(int i=0;i<n;i++){
	cin>>temp;
	q.push(temp);
	} 
	while(q.size()>1){
		x=q.top();
		q.pop();
		y=q.top();
		q.pop();
		q.push(x+y);//合并最小的那两堆,并放入优先队列
		 ans+=x+y;
	}
	cout<<ans;
	return 0;
}
# P1090 [NOIP 2004 提高组] 合并果子 ## 题目背景 [P6033](https://www.luogu.com.cn/problem/P6033) 为本题加强版。 ## 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 $n-1$ 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。 因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 $1$ ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。 例如有 $3$ 种果子,数目依次为 $1$ , $2$ , $9$ 。可以先将 $1$ 、 $2$ 堆合并,新堆数目为 $3$ ,耗费体力为 $3$ 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 $12$ ,耗费体力为 $12$ 。所以多多总共耗费体力 $=3+12=15$ 。可以证明 $15$ 为最小的体力耗费值。 ## 输入格式 共两行。 第一行是一个整数 $n(1\leq n\leq 10000)$ ,表示果子的种类数。 第二行包含 $n$ 个整数,用空格分隔,第 $i$ 个整数 $a_i(1\leq a_i\leq 20000)$ 是第 $i$ 种果子的数目。 ## 输出格式 一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 $2^{31}$ 。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 1 2 9 ``` ### 输出 #1 ``` 15 ``` ## 说明/提示 对于 $30\%$ 的数据,保证有 $n \le 1000$; 对于 $50\%$ 的数据,保证有 $n \le 5000$; 对于全部的数据,保证有 $n \le 10000$。使用贪心解决问题 C++语法
最新发布
10-01
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。 因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。 例如有 3 种果子,数目依次为 1 , 2 , 9 。可以先将 1 、 2 堆合并,新堆数目为 3 ,耗费体力为 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 ,耗费体力为 12 。所以多多总共耗费体力 =3+12=15 。可以证明 15 为最小的体力耗费值。 输入格式 共两行。 第一行是一个整数 n(1≤n≤10000) ,表示果子的种类数。 第二行包含 n 个整数,用空格分隔,第 i 个整数 a i ​ (1≤a i ​ ≤20000) 是第 i 种果子的数目。 输出格式 一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2 31 。 输入输出样例 输入 #1复制 3 1 2 9 输出 #1复制 15 说明/提示 对于 30% 的数据,保证有 n≤1000: 对于 50% 的数据,保证有 n≤5000; 对于全部的数据,保证有 n≤10000。使用c++
04-19
<think>好的,用户想了解C++优先队列priority_queue用法,包括使用方法、示例、语法和解释。我需要根据提供的引用资料来整理回答。 首先,要确定priority_queue的基本用法。根据引用[1],priority_queueC++中需要包含头文件,但引用[4]提到头文件是<queue>,而引用[5]的例子也使用了#include <queue>,所以应该纠正引用[4]中的头文件错误。基本语法是priority_queue<类型, 容器, 比较函数>,默认使用vector作为容器,比较函数默认是less,形成大顶堆。 接下来,自定义比较函数部分。引用[1]和[2]提到可以使用仿函数或decltype来指定比较函数。例如,仿函数需要重载operator(),并且注意比较的逻辑,比如引用[2]中的例子用*a > *b实现小顶堆。同时,引用[3]展示了使用less和greater来创建大顶堆和小顶堆的不同方法。 然后,示例部分。引用[5]提供了基本的示例代码,使用默认的priority_queue,输出是按大顶堆排列。需要补充小顶堆的示例,以及使用自定义比较函数的例子,比如结构体或指针的比较。 需要注意语法中的细节,比如模板参数的位置,使用decltype时需要配合构造函数传递比较函数对象,如引用[1]中的例子。此外,在C++17之后可能可以省略模板参数,但为了兼容性最好明确指定。 用户可能的问题包括如何调整堆的类型、自定义数据结构的比较方法,以及为什么使用仿函数。需要确保回答覆盖这些点,并引用正确的资料。例如,引用[3]解释了大顶堆和小顶堆的不同声明方式,引用[2]展示了指针类型的比较方法。 最后,生成相关问题,可能涉及性能、应用场景或与其他容器的比较。需要确保问题与主题相关,并基于引用内容,比如比较函数的实现方式或优先队列的时间复杂度。 总结回答结构:基本用法、自定义比较函数的三种方法、示例代码、注意事项,然后相关问题。确保每个部分都有对应的引用支持,并正确标注引用标识。</think>### C++priority_queue用法详解 #### 1. 基本语法与默认行为 优先队列`priority_queue`是C++标准库提供的**堆数据结构**实现,包含在头文件`<queue>`中[^4][^5]。其默认行为为**大顶堆**(降序排列),声明语法为: ```cpp priority_queue<T, Container, Compare> pq; ``` - `T`:元素类型(如`int`、`string`) - `Container`:底层容器(默认`vector<T>`) - `Compare`:比较函数(默认`less<T>`,即大顶堆) 例如,创建整数大顶堆: ```cpp priority_queue<int> pq; // 等价于 priority_queue<int, vector<int>, less<int>> ``` #### 2. 自定义比较函数方法 ##### (1) 使用内置函数对象 通过`greater<T>`创建**小顶堆**(升序排列): ```cpp priority_queue<int, vector<int>, greater<int>> min_heap; // 小顶堆[^3] ``` ##### (2) 自定义仿函数(推荐) 定义含`operator()`的类,例如处理指针类型: ```cpp class Compare { public: bool operator()(int* a, int* b) { return *a > *b; // 小顶堆比较规则[^2] } }; priority_queue<int*, vector<int*>, Compare> ptr_heap; ``` ##### (3) 使用decltype与lambda表达式(C++11+) 适用于需要动态比较逻辑的场景: ```cpp auto cmp = [](int a, int b) { return a > b; }; priority_queue<int, vector<int>, decltype(cmp)> custom_heap(cmp); // 需传递lambda对象[^1] ``` #### 3. 完整示例代码 ##### 示例1:默认大顶堆 ```cpp #include <iostream> #include <queue> using namespace std; int main() { int arr[] = {3, 1, 4, 1, 5}; priority_queue<int> pq; for (int x : arr) pq.push(x); while (!pq.empty()) { cout << pq.top() << " "; // 输出:5 4 3 1 1 pq.pop(); } return 0; } ``` ##### 示例2:结构体排序 ```cpp struct Node { int value; Node(int v) : value(v) {} }; struct NodeCompare { bool operator()(const Node& a, const Node& b) { return a.value < b.value; // 按value降序排列 } }; priority_queue<Node, vector<Node>, NodeCompare> node_heap; ``` #### 4. 关键注意事项 1. **时间复杂度**:插入(`push`)和删除堆顶(`pop`)操作均为$O(\log n)$,访问堆顶(`top`)为$O(1)$[^3] 2. **元素类型要求**:比较函数需满足**严格弱序**关系 3. **容器选择**:底层容器必须支持随机访问迭代器(如`vector`或`deque`)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值