信也科技 x StarRocks:打造统一销售数据平台

信也科技为应对销售业务快速发展带来的数据处理挑战,选择了StarRocks构建实时数仓平台,以解决原有架构的痛点,如多份数据存储、高运维成本等问题。StarRocks凭借其低延迟、高并发、复杂查询支持等优势,成功统一数据存储计算引擎,简化数据管理,提升研发效率,并支持多变的业务需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信也科技是在纽交所上市的金融科技集团,致力于通过大数据、人工智能、区块链等技术实现“科技,让金融更美好”的使命,推动金融服务从可获得进一步向可负担、可信任和可享受进化,成为受用户欢迎、受伙伴信任的金融科技品牌。信也科技旗下包括金融科技业务、国际业务、科技生态孵化业务三大板块,具体涵盖消费金融、科技输出、孵化器和投资等业务,坚持以创新技术服务大众、赋能机构,助力实体经济发展。

“ 作者:余荣幸,
信也科技大数据资深专家 ”

业务背景

公司销售业务快速发展,用户对多维数据分析的实时性要求越来越高,场景也变化多样,业务的复杂性和多样性给公司研发和运维成本带来很大的挑战。与此同时开源数据分析引擎也是百花齐放,日新月异。信也科技实时数据团队致力于研发效率最大化,选择一款合适高效的存储引擎就尤为重要。信也科技通过引入新一代性能彪悍的 MPP 架构数据库 StarRocks 来构建实时数仓平台,进行实时数据分析,提供统一的数据服务;降低业务使用复杂度,提升用户体验,实现生产效率最大化。

原有架构及痛点

在这里插入图片描述
销售数据平台初期分四个子项目:

销售 APP 系统:实时消费业务库 Binlog 数据,通过 Flink 实时消费清洗,计算不同维度下的销售订单和业绩等指标,按时、按天、按月等时间维度进行实时计算,数据落到 MySQL / MongoDB 。

销售智能地图系统:为了更好的分析销售行为和跟踪销售轨迹,关注销售的订单,业绩等指标,数据经过流转和清洗完之后,除了发一份数据到 MySQL 之外,最后还要推送一份数据到 Elasticsearch 中,引入 Elasticsearch 的原因一是用到地图 GEO 函数,二是灵活地支持多种维度查询。

销售实时大盘:清洗完的数据(订单、业绩等)发送到消息中间件,然后落到 Redis、MySQL 等存储系统中供前端使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值