代码随想录Day14|二叉树|理论基础、递归遍历、迭代遍历、统一迭代

理论基础

二叉树的种类

满二叉树:深度为k,有2^k-1个节点的二叉树。
在这里插入图片描述
完全二叉树:
定义:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
补充:优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系
在这里插入图片描述

二叉搜索树:是一个有序树。

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树
    在这里插入图片描述
    平衡二叉搜索树:AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
    在这里插入图片描述
    C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树。unordered哈希表。

二叉树的存储方法

链式存储:指针,也可以顺序存储:链表
数组存储:如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

二叉树的遍历方法

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
    前序遍历(递归法,迭代法):中左右
    中序遍历(递归法,迭代法):左中右
    后序遍历(递归法,迭代法):左右中
  2. 广度优先遍历:一层一层的去遍历
    层次遍历(迭代法)

递归遍历

递归算法三要素:

  1. 确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。
  2. 确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。
  3. 确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程。

迭代遍历

递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
至于迭代?

题目链接

144.前序遍历
https://leetcode.com/problems/binary-tree-preorder-traversal/
94.中序遍历
https://leetcode.com/problems/binary-tree-inorder-traversal/
145.后序遍历
https://leetcode.com/problems/binary-tree-postorder-traversal/


代码

前序遍历:左中右 preorder

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    //递归
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        traversal(root,result);
        return result;
    }

    public void traversal(TreeNode curr, List<Integer> result) { // 确定递归函数的参数和返回值:list存放节点的数值,不需要返回值
        if (curr == null) {
            return;
        } // 确定终止条件:当前遍历的节点是空了,那么本层递归就要结束了
        result.add(curr.val); // 确定单层递归的逻辑:中左右
        traversal(curr.left, result);
        traversal(curr.right, result);
    }
}

前序遍历:中左右 入栈顺序:中右左 与出栈:中左右 顺序相反

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        // 非递归,迭代法,栈
        // 前序遍历顺序:中-左-右,入栈顺序:中-右-左
        List<Integer> result = new ArrayList<>();
        Deque<TreeNode> stack = new LinkedList<>();
        if(root == null) {
            return result;
        }
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode curr = stack.peek();
            stack.pop();
            result.add(curr.val);
            if(curr.right != null) { // 空不入栈
                stack.push(curr.right);
            }
            if(curr.left != null) {
                stack.push(curr.left);
            }
        }
        return result;
    }
}

中序遍历:左中右 inorder

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        // 递归
        List<Integer> result = new ArrayList<>();
        traversal(root, result);
        return result;
    }

    public void traversal(TreeNode node, List<Integer> result) {
        if (node == null) {
            return;
        }
        traversal(node.left, result); // left
        result.add(node.val); // middle
        traversal(node.right, result); // right
    }
}

中序遍历:左中右 需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。

与前序遍历不通用,为什么?
前序遍历简洁是因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。

  1. 处理:将元素放进result数组中
  2. 访问:遍历节点
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        // 非递归,迭代,左中右
        List<Integer> result = new ArrayList<>();
        Deque<TreeNode> stack = new LinkedList<>();
        TreeNode curr = root;
        while (!stack.isEmpty() || curr != null) { 
            // 不为空即始终有元素可弹出,指针不null即依然在有元素在处理
            if (curr != null) { // 指针来访问节点,访问到最底层
                stack.push(curr);  // 将访问的节点放进栈
                curr = curr.left; // 左 针对每个存在的节点,寻找左边的最底层
            } else {
                curr = stack.peek(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)
                stack.pop();
                result.add(curr.val); // 中
                curr = curr.right;// 右 
                //左为空弹自己,右为空继续弹下一个(即叶子节点弹父节点 中)
                //x的右为空,根据左中右,说明x为根结点的子树都访问过了,随即弹出栈中下一个元素(如果还有元素)
            }
        }
        return result;
    }
}

后序遍历:左右中 postorder

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        // 递归,后序遍历,左右中
        List<Integer> result = new ArrayList<>();
        traversal(root, result);
        return result;
    }
    public void traversal(TreeNode node, List<Integer> result) {
        if (node == null) {
            return;
        }
        traversal(node.left, result); // 左
        traversal(node.right, result); // 右
        result.add(node.val); // 中
    }
}

后序遍历:左右中 在这里插入图片描述

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        // 非递归,迭代法,空节点不入栈
        // 后序遍历顺序 左-右-中 入栈顺序:中-左-右 出栈顺序:中-右-左, 最后翻转结果
        List<Integer> result = new ArrayList<>();
        Deque<TreeNode> stack = new LinkedList<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode curr = stack.peek();
            stack.pop();
            result.add(node.val);
            if (node.left != null){
                stack.push(node.left); // 左 // 也可以在此处判断left null并加上判断root null
            }
            if (node.right != null){
                stack.push(node.right); // 右
            }
        }
        Collections.reverse(result); // 倒序
        return result;
    }
}

统一迭代:
有点复杂
https://programmercarl.com/二叉树的统一迭代法.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值