455.分发饼干
思路:
在满足孩子胃口的前提下,尽可能分配小的饼干给到他
- 胃口太大轮到下一个孩子
优先考虑胃口,先喂饱大胃口
局部最优:大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个
如果最大的饼干可以满足肚子最大的孩子,那就给他吃,同时比较下一个。
如果最大的饼干不能满足肚子最大的孩子,那就让他饿着,然后看看能不能满足第二个孩子。(有点黑暗系,放弃小朋友)
class Solution {
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int j = s.length-1;
int result = 0;
for (int i = g.length-1; i >=0; i--) {
if (j >=0 && s[j] >= g[i]) {
result++;
j--;
}
}
return result;
}
}
- 饼干太小轮到下一个饼干
优先考虑饼干,小饼干先喂饱小胃口
如果最小的饼干可以满足肚子最小的孩子,那就给他吃,同时比较下一个。
如果最小的饼干不能满足肚子最小的孩子,那就扔掉饼干,看看下一个饼干能不能给他吃。(放弃的是饼干)
class Solution {
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);
Arrays.sort(s);
int result = 0;
int i =0;
for (int j = 0; j < s.length; j++) {
if (i < g.length && s[j] >= g[i]) {
result++;
i++;
}
}
return result;
}
}
376. 摆动序列
贪心:
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
尽可能保持峰值,删除单一坡度上的点
三种情况:
情况一:上下坡中有平坡
情况二:数组首尾两端
情况三:单调坡中有平坡
class Solution {
public int wiggleMaxLength(int[] nums) {
int preDiff = 0; // 初始化为0
int currDiff = 0;
int count = 1; // 默认1,最右边有一个峰值
for (int i = 0; i < nums.length-1; i++) {
currDiff = nums[i+1] - nums[i];
if (preDiff <= 0 && currDiff > 0 || preDiff >= 0 && currDiff < 0) {
count++;
preDiff = currDiff; //注意只在摆动的时候才更新pre
}
}
return count;
}
}
53. 最大子序和
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
class Solution {
public int maxSubArray(int[] nums) {
int result = Integer.MIN_VALUE; // 注意初始化为min value最小负数
int sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
result = result > sum ? result : sum; // 取区间累计的最大值(相当于不断确定最大子序终止位置)
if (sum < 0) {
sum = 0;
}
}
return result;
}
}
时间复杂度:O(n)
空间复杂度:O(1)