day31|贪心算法01|● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

文章介绍了如何运用贪心算法来解决编程中的几个问题,如饼干分配以满足孩子的胃口,寻找最长摆动序列,以及找到数组的最大子序和。贪心策略关注于局部最优解,以期达到全局最优。在每个问题中,都展示了如何通过比较和选择合适的元素来优化解决方案。
摘要由CSDN通过智能技术生成

455.分发饼干

思路:
在满足孩子胃口的前提下,尽可能分配小的饼干给到他

  1. 胃口太大轮到下一个孩子
    优先考虑胃口,先喂饱大胃口
    局部最优:大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个

如果最大的饼干可以满足肚子最大的孩子,那就给他吃,同时比较下一个。
如果最大的饼干不能满足肚子最大的孩子,那就让他饿着,然后看看能不能满足第二个孩子。(有点黑暗系,放弃小朋友)

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int j = s.length-1;
        int result = 0;
        for (int i = g.length-1; i >=0; i--) {
            if (j >=0 && s[j] >= g[i]) {
                result++;
                j--;
            }
        }
        return result;
    }
}
  1. 饼干太小轮到下一个饼干
    优先考虑饼干,小饼干先喂饱小胃口

如果最小的饼干可以满足肚子最小的孩子,那就给他吃,同时比较下一个。
如果最小的饼干不能满足肚子最小的孩子,那就扔掉饼干,看看下一个饼干能不能给他吃。(放弃的是饼干)

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int result = 0;
        int i =0;
        for (int j = 0; j < s.length; j++) {
            if (i < g.length && s[j] >= g[i]) {
                result++;
                i++;
            }
        }
        return result;
    }
}

376. 摆动序列

贪心:
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
尽可能保持峰值,删除单一坡度上的点

三种情况:
情况一:上下坡中有平坡
情况二:数组首尾两端
情况三:单调坡中有平坡

class Solution {
    public int wiggleMaxLength(int[] nums) {
        int preDiff = 0; // 初始化为0
        int currDiff = 0;
        int count = 1; // 默认1,最右边有一个峰值
        for (int i = 0; i < nums.length-1; i++) {
            currDiff = nums[i+1] - nums[i];
            if (preDiff <= 0 && currDiff > 0 || preDiff >= 0 && currDiff < 0) {
                count++;
                preDiff = currDiff; //注意只在摆动的时候才更新pre
            }
        }
        return count;
    }
}

53. 最大子序和

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

class Solution {
    public int maxSubArray(int[] nums) {
        int result = Integer.MIN_VALUE; // 注意初始化为min value最小负数
        int sum = 0; 
        for (int i = 0; i < nums.length; i++) {
            sum += nums[i];
            result = result > sum ? result : sum; // 取区间累计的最大值(相当于不断确定最大子序终止位置)
            if (sum < 0) {
                sum = 0;
            }
        }
        return result;
    }
}

时间复杂度:O(n)
空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值