343. 整数拆分
- 确定dp数组下标含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。 - j从1遍历到i-1,这是可以拆分的单个数范围, j * (i - j)是把i这个数拆分成两个数,而j * dp[i - j]是拆分成两个以上的数相乘(j,以及i-j被拆分的最大乘积)。 并且因为根据每个单独拆分的数字dp需要一直更新,所以dp[i]也需要比较。
- 需要再看看解析,有些拆分方式还是不是很理解。
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n+1];
//dp[0] = 0;
//dp[1] = 0; // 其实这两个初始化都是没有意义的,因为题目要求拆分两个正整数
dp[2] = 1;
for (int i = 3; i <= n; i++) {
for (int j = 1; j < i-1; j++) {
dp[i] = Math.max(Math.max(j * (i-j), j * dp[i-j]), dp[i]);
}
}
return dp[n];
}
}
96.不同的二叉搜索树
自己想基本想不出来,因为过分关注二叉搜索树的性质和树的元素数值了,但这些并不重要,只要找到规律。
实际上是在求,可以形成多少种不同的二叉树,而二叉树的结构和节点的布局是有规律的,如图
class Solution {
public int numTrees(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i < dp.length; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
}
}