01背包问题
01背包就是有一个背包,限制容量/重量,且每个物品只能放一次,问最大价值。
二维
- 确定dp数组以及下标的含义
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少 - 确定递推公式
基于i-1推出当前的dp[i][j] 有两种可能:
不放物品i dp[i - 1][j]
放物品i dp[i - 1][j - weight[i]] + value[i]
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
- dp数组如何初始化
当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
但从怎么推出dp[i][j]可知,其他每个值从上方,或者左上方得,所以和当前初始化的值无关,可初始化成任意数 - 确定遍历顺序
都可以,这里先遍历物品再遍历背包重量。 - 举例推导dp数组
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
01背包滚动数组
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实就是把dp[i - 1]那一层拷贝到dp[i]上,就是将上一层重复利用,直接拷贝到当前层。因为实际上i-1这一层存储的值,只有在推论i的时候才需要。这就成了一个滚动的数组。(很形象哎!)
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
同时遍历顺序也不一样,
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
这里是倒序遍历,我的理解是因为每次更新的操作是,拷贝上一层到这一层,然后当前这一格的值二维中应该从上方和左上方获得,即一维中从当前格和左方的格中获得。所以只能从前向后,要不值就会被覆盖了,遍历到最后就是已经改变过的值。
也有说法是倒序遍历是为了保证物品i只被放入一次,也就是到最后一格比较的时候,实际上他左边格的值是已经放过物品i的情况。
01背包的标准解法
public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
int wLen = weight.length;
//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
int[] dp = new int[bagWeight + 1];
//遍历顺序:先遍历物品,再遍历背包容量
for (int i = 0; i < wLen; i++){
for (int j = bagWeight; j >= weight[i]; j--){
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
//打印dp数组
for (int j = 0; j <= bagWeight; j++){
System.out.print(dp[j] + " ");
}
}
416. 分割等和子集
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背包的最大重量为dp[j]。
如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要
首先,确定本题为01背包应用,物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2,每个元素也就是物品,他的重量和价值都为这个元素的数值! 每个元素只能放入一次,看能不能装满这个背包(能装满就说明true)
注意向下取整的情况
class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
if (sum % 2 == 1) { // 注意一定没有解!!!
return false;
}
int[] dp = new int[sum/2+1];
for (int i = 0; i < nums.length; i++) {
for (int j = sum/2; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = Math.max(dp[j], dp[j-nums[i]]+nums[i]);
}
}
if (dp[dp.length-1] == sum/2) return true; // 集合中的元素正好可以凑成总和target
return false;
}
}