day43|● 1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零

文章讲述了利用动态规划解决两道与石头重量和背包问题相关的算法题目。第一题目标是最小化最后剩余石头的重量,第二题要求找到目标和的组合方式,第三题是在01背包限制下寻找最大子集。所有问题都通过构建动态规划数组来求解。
摘要由CSDN通过智能技术生成

1049. 最后一块石头的重量 II

有一堆石头,每块石头的重量都是正整数。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。
Input: stones = [2,7,4,1,8,1]
Output: 1
Explanation:
We can combine 2 and 4 to get 2, so the array converts to [2,7,1,8,1] then,
we can combine 7 and 8 to get 1, so the array converts to [2,1,1,1] then,
we can combine 2 and 1 to get 1, so the array converts to [1,1,1] then,
we can combine 1 and 1 to get 0, so the array converts to [1], then that’s the optimal value.

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。
和上题类似(上题求背包能否装满, 本题求背包最多装多少),就是背包容量为j时,最多可以装多重的石头,石头是物品,质量和价值都为stones[i]。

要装满sum/2容量的背包,看我拥有的这么多石头,最多能装多少重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。
在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for (int i = 0; i < stones.length; i++) {
            sum += stones[i];
        }
        int target = sum / 2;
        int[] dp = new int[target+1];
        for (int i = 0; i < stones.length; i++) {
            for (int j = target; j >= stones[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j-stones[i]] + stones[i]);
            }
        }
        return (sum - dp[dp.length-1])-dp[dp.length-1];
    }
}

494. 目标和

首先明确01背包问题,背包容量是(sum+target)/ 2,一半为+一半为-,看装满这个背包有多少种方法。
有两种情况是无解的,一是sum+target和为基数,二是绝对值大于总和,那么全为正全为负都无解。

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。
例如:dp[j],j 为5,
已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。

求组合类问题,看有多少种方法都是!!!

注意初始化为dp[0] = 1;

dp[j] += dp[j - nums[i]]
class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) {
            sum += nums[i];
        }
        if (Math.abs(target) > sum) return 0;
        sum += target;
        if (sum % 2 == 1) return 0;
        int[] dp = new int[sum/2+1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = sum/2; j >= nums[i]; j--) {
                dp[j] += dp[j- nums[i]];
            }
        }
        return dp[dp.length-1];
    }
}

474.一和零

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。 其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

本题是一道01背包问题,strs数组中的元素就是物品,m和n相当于背包,只不过是两个维度上的限制。
这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m+1][n+1];
        dp[0][0] = 0;
        for (int k = 0; k < strs.length; k++) {
            char[] chars = strs[k].toCharArray();
            int zeroNum = 0;
            int oneNum = 0;
            for (char c: chars) {
                if (c =='0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i-zeroNum][j-oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值