1.逻辑架构剖析
1.1服务器处理客户端请求
首先MySQL是典型的c/S架构,即 Client/Server 架构,服务器端程序使用的mysqld。
不论客户端进程和服务器进程是采用哪种方式进行通信,最后实现的效果都是:客户端进程向服务器进程发送一段文本(SQL语句),服务器进程处理后再向客户端进程发送一段文本(处理结果)。
那服务器进程对客户端进程发送的请求做了什么处理,才能产生最后的处理结果呢?这里以查询请求为例展示:
下面具体展开看看
1.2 Connectors
Connectors,指的是不同语言中与SQL的交互。MySQL首先是一个网络程序,在TCP之上定义了自己的应用层协议。所以要使用MysQL,我们可以编写代码,跟MySQL Server建立TCP连接,之后按照其定义好的协议进行交互。或者比较方便的办法是调用SDK,比如Native C API、JDBC、PHP等各语言MysQL Connector,或者通过ODBC。但"通过SDK来访问MySQL,本质上还是在TCP连接上通过MySQL协议跟MySQL进行交互。
接下来的MySQL Server结构可以分为如下的三层:
1.3 第1层:连接层
系统(客户端)访问MySQL服务器前,做的第一件事就是建立TCP连接。
经过三次握手建立连接成功后,MySQL服务器对TCP传输过来的账号密码做身份认证、权限获取。
- 用户名或密码不对,会收到一个Access denied for user错误,客户端程序结束执行
- 用户名密码认证通过,会从权限表查出账号拥有的权限与连接关联,之后的权限判断逻辑,都将依赖于此时读到的权限
TCP连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。
所以连接管理的职责是负责认证、管理连接、获取权限信息。
1.4 第2层:服务层
-
SQL Interface:SQL接口
- 接收用户的SQL命令,并且返回用户需要查询的结果;
- MySQL支持DML(数据操作语言)、DDL(数据定义语言)、存储过程、视图、触发器、自定义函数等多种SQL语言接口;
-
Parser:解析器
- 在解析器中对SQL语句进行语法分析、语义分析。将SQL语句分解成数据结构并将这个结构传递到后续步骤,以后SQL语句的传递和处理就是基于这个结构的,如果在分解构成中遇到错误,那么就说明这个SQL语句是不合理的;
- 在SQL命令传递到解析器的时候会被解析器验证和解析,并为其创建语法树,并根据数据字典丰富查询语法树,会验证该客户端是否具有执行该查询的权限。创建好语法树后,MySQL还会对SQL查询进行语法上的优化,进行查询重写;
-
Optimizer:查询优化器
-
SQL语句在语法解析之后、查询之前会使用查询优化器确定SQL语句的执行路径,生成一个执行计划。
-
这个执行计划表明应该使用哪些索引进行查询(全表检索还是使用索引检索),表之间的连接顺序如何,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将查询结果返回给用户。
-
它使用“选取-投影-连接”策略进行查询。例如:
SELECT id,name FROM student WHERE gender = '女';
这个SELECT查询先根据WHERE语句进行选取,而不是将表全部查询出来以后再进行gender过滤。
这个SELECT查询先根据id和name进行属性投影,而不是将属性全部取出以后再进行过滤,将这两个查询条件连接起来生成最终查询结果。
-
-
Caches & Buffers:查询缓存组件
- MySQL内部维持着一些Cache和Buffer,比如Query Cache用来缓存一条SELECT语句的执行结果,如果能够在其中找到对应的查询结果,那么就不必再进行查询解析、优化和执行的整个过程了,直接将结果反馈给客户端。
- 这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等。
- 这个查询缓存可以在不同客户端之间共享。
- 从MySQL5.7.20开始,不推荐使用查询缓存,并在MySQL 8.0中删除。
1.5 第3层:引擎层
插件式存储引擎层( Storage Engines),真正的负责了MySQL中数据的存储和提取,对物理服务器级别维护的底层数据执行操作,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样我们可以根据自己的实际需要进行选取。
MySQL 8.0.26默认支持的存储引擎如下:
1.6 存储层
所有的数据,数据库、表的定义,表的每一行的内容,索引,都是存在文件系统上,以文件的方式存在的,并完成与存储引擎的交互。当然有些存储引擎比如InnoDB,也支持不使用文件系统直接管理裸设备,但现代文件系统的实现使得这样做没有必要了。在文件系统之下,可以使用本地磁盘,可以使用DAS、NAS、SAN等各种存储系统。
1.7 小结
MySQL架构图本节开篇所示。下面为了熟悉SQL执行流程方便,我们可以简化如下:
简化为三层结构:
- 连接层:客户端和服务器端建立连接,客户端发送SQL至服务器端;
- SQL层(服务层)︰对SQL语句进行查询处理;与数据库文件的存储方式无关;
- 存储引擎层:与数据库文件打交道,负责数据的存储和读取。
2. SQL执行流程
2.1 MySQL中SQL执行流程
1. 查询缓存
Server如果在查询缓存中发现了这条SQL语句,就会直接将结果返回给客户端;如果没有,就进入到解析器阶段。
需要说明的是,因为查询缓存往往效率不高,所以在MySQL8.0之后就抛弃了这个功能。
MySQL拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以key-value对的形式,被直接缓存在内存中。key是查询的语句,value是查询的结果。如果你的查询能够直接在这个缓存中找到key,那么这个value就会被直接返回给客户端。如果语句不在查询缓存中,就会继续后面的执行阶段。执行完成后,执行结果会被存入查询缓存中。所以,如果查询命中缓存,MySQL不需要执行后面的复杂操作,就可以直接返回结果,这个效率会很高。
需要说明的是,在MySQL中的查询缓存,不是缓存查询计划,而是查询对应的结果,只有相同的查询操作才会命中查询缓存。两个查询请求在任何字符上的不同(例如:空格、注释、大小写),都会导致缓存不会命中。因此 MysQL的查询缓存命中率不高。
查看当前mysql实例是否开启缓存机制(8.0之后没有)
SHOW variables like '%query_cache_type%';
使用query_cache_type设置是否开启缓存
#query_cache_type有3个值:0代表关闭查询缓存OFF,1代表开启ON,2代表按需使用DEMAND
query_cache_type=2
#使用 SQL_CACHE显式指定使用查询缓存
SELECT SQL_CACHE * FROM user WHERE id=1;
#使用 SQL_NO_CACHE显式指定使用查询缓存
SELECT SQL_NO_CACHE * FROM user WHERE id=1;
2. 解析器
在解析器中对SQL语句进行语句分析、语义分析
分析器先做”词法分析”。你输入的是由多个字符串和空格组成的一条sQL语句,MySQL需要识别出里面的字符串分别是什么,代表什么。
接着,要做”语法分析”。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输入的这个SQL语句是否满足MySQL语法。
select * from test where id=1;
如果SQL语句正确,则会生成一个这样的语法树:
3. 优化器
在优化器中会确定SQL语句的执行路径,比如是根据全表检索,还是索引检索等;
经过了解析器,MySQL就知道你要做什么了。在开始执行之前,还要先经过优化器的处理。一条查询可以有很多种执行方式,最后都返回相同的结果。优化器的作用就是找到这其中最好的执行计划。
比如:优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序,还有表达式简化、子查询转为连接、外连接转为内连接等。
在查询优化器中,可以分为逻辑查询优化阶段和物理查询优化阶段。
4. 执行器
截止到现在,还没有真正去读写真实的表,仅仅只是产出了一个执行计划。于是就进入了执行器阶段。
在执行之前需要判断该用户是否具备权限。如果没有,就会返回权限错误。如果具备权限,就执行SQL查询并返回结果。在MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。
SQL语句在MysQL中的流程是:SQL语句→查询缓存→解析器→优化器→执行器。
3. 数据库缓冲池(buffer pool)
InnoDB存储引擎是以页为单位来管理存储空间的,我们进行的增删改查操作其实本质上都是在访问页面(包括读页面、写页面、创建新页面等操作)。而磁盘I/o需要消耗的时间很多,而在内存中进行操作,效率则会高很多,为了能让数据表或者索引中的数据随时被我们所用,DBMS会申请占用内存来作为数据缓冲池,在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访问。
这样做的好处是可以让磁盘活动最小化,从而减少与磁盘直接进行 I/0 的时间。要知道,这种策略对提升sQL语句的查询性能来说至关重要。如果索引的数据在缓冲池里,那么访问的成本就会降低很多。
3.1 缓冲池 VS 查询缓存
1. 缓冲池(Buffer Poll)
首先我们需要了解在InnoDB存储引擎中,缓冲池都包括了哪些。
在InnoDB存储引擎中有一部分数据会放到内存中,缓冲池则占了这部分内存的大部分,它用来存储各种数据的缓存,如下图所示:
从图中,你能看到InnoDB缓冲池包括了数据页、索引页、插入缓冲、锁信息、自适应Hash和数据字典信息等。
缓存池的重要性:
对于使用InnoDB作为存储引擎的表来说,不管是用于存储用户数据的索引(包括聚簇索引和二级索引),还是各种系统数据,都是以页的形式存放在表空间中的,而所谓的表空间只不过是InnoDB对文件系统上一个或几个实际文件的抽象,也就是说我们的数据说到底还是存储在磁盘上的。缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟。
InnoDB存储引擎在处理客户端的请求时,当需要访问某个页的数据时,就会把完整的页的数据全部加载到内存中,也就是说即使我们只需要访问一个页的一条记录,那也需要先把整个页的数据加载到内存中。将整个页加载到内存中后就可以进行读写访问了,在进行完读写访问之后并不着急把该页对应的内存空间释放掉,而是将其缓存起来,这样将来有请求再次访问该页面时,就可以省去磁盘IO的开销了。
缓存原则:
“位置*频次”这个原则,可以帮我们对I/o 访问效率进行优化。
首先,位置决定效率,提供缓冲池就是为了在内存中可以直接访问数据。
其次,频次决定优先级顺序。因为缓冲池的大小是有限的,比如磁盘有200G,但是内存只有16G,缓冲池大小只有1G,就无法将所有数据都加载到缓冲池里,这时就涉及到优先级顺序,会优先对使用频次高的热数据进行加载。
2. 查询缓存
查询缓存是提前把查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在MySQL中的查询缓存,不是缓存查询计划,而是查询对应的结果。因为命中条件苛刻,而且只要数据表发生变化,查询缓存就会失效,因此命中率低。
缓冲池服务于数据库整体的l/O操作,它们的共同点都是通过缓存的机制来提升效率。
3.2 缓冲池如何读取数据
缓冲池管理器会尽量将经常使用的数据保存起来,在数据库进行页面读操作的时候,首先会判断该页面是否在缓冲池中,如果存在就直接读取,如果不存在,就会通过内存或磁盘将页面存放到缓冲池中再进行读取。
缓存在数据库中的结构和作用如下图所示:
执行SQL语句更新了缓存池中的数据,数据会立刻同步到磁盘吗?
实际上,当我们对数据库中的记录进行修改的时候,首先会修改缓冲池中页里面的记录信息,然后数据库会以一定的频率刷新到磁盘上。注意并不是每次发生更新操作,都会立刻进行磁盘回写。缓冲池会采用一种叫做checkpoint的机制将数据回写到磁盘上,这样做的好处就是提升了数据库的整体性能。
3.3 查看/设置缓冲池的大小
如果你使用的是InnoDB存储引擎,可以通过查看innodb_buffer_pool_size 变量来查看缓冲池的大小,命令如下:
SHOW variables like 'innodb_buffer_pool_size';
修改缓冲池大小,命令如下:
set global innodb_buffer_pool_size = 268435465; #256M
或者(修改配置文件my.cnf):
[server]
innodb_buffer_pool_size = 268435465;
3.4 多个Buffer Pool实例
Buffer Pool本质是InnoDB向操作系统申请的一块连续的内存空间,在多线程环境下,访问Buffer Pool中的数据都需要加锁处理。在Buffer Pool特别大而且多线程并发访问特别高的情况下,单一的Buffer Pool可能会影响请求的处理速度。所以在Buffer Pool特别大的时候,我们可以把它们拆分成若干个小的Buffer Pool,每个Buffer Pool都称为一个实例,它们都是独立的,独立的去申请内存空间,独立的管理各种链表。所以在多线程并发访问时并不会相互影响,从而提高并发处理能力。
可以在服务器启动的时候通过设置innodb_buffer_pool_instances的值来修改Buffer Pool实例的个数:
[server]
innodb_buffer_pool_instances = 2;
这样表明我们要创建2个Buffer Pool实例。
使用命令查看缓冲池个数:
show variables like 'innodb_buffer_pool_instances';
每个Buffer Pool实例实际占用空间:
innodb_buffer_pool_size / innodb_buffer_pool_instances;
也就是总共的大小除以实例的个数,结果就是每个Buffer Pool实例占用的大小。
3.5 引申问题
Buffer Pool是MySQL内存结构中十分核心的一个组成,你可以先把它想象成一个黑盒子。
黑盒下的更新数据流程
假设修改Buffer Pool中的数据修改成功,但是还未将数据刷入磁盘MySQL就挂了、或者多条SQL刷入磁盘过程中MySQL挂了,这时如何处理?
答:Redo Log & Undo Log