- 博客(5)
- 收藏
- 关注
原创 [学习笔记]机器学习实战(五)
第5章 Logisitic回归 本章将接触到最优化算法,并利用它们训练出一个非线性函数用于分类。 几个概念: - 回归:假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线成为最佳拟合直线),这个拟合过程就称作回归。 - 利用Logisitic回归进行分类的主要思想:根据现有数据对分类边界线建立回归公式,以此进行分类。 回归一词源于最佳拟合,表示要找到最佳拟合参数集。而训练分类器时...
2018-04-15 20:14:19 358
原创 [学习笔记]机器学习实战(四)
第4章 基于概率论的分类方法:朴素贝叶斯 概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要 4.1 基于贝叶斯决策理论的分类方法 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯是贝叶斯决策理论的一部分。 贝叶斯决策理论 假设有一个由两类数据组成的数据集。 我们用 p1(x,y)p1(x,y)p1(x, y)...
2018-04-14 18:20:36 242
原创 [学习笔记]机器学习实战(三)
第3章 决策树 我们经常使用决策树处理分类问题,近来的调查表明决策树也是最经常使用的数据挖掘算法。 决策树可以使用流程图来理解。 矩形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),它可以到达另一个判断模块或者终止模块。 上一章介绍的kNN可以完成很...
2018-04-12 21:48:00 457
原创 [学习笔记]机器学习实战(二)
第2章 k-邻近算法(k-Nearest Neighbor,kNN) 本章内容仅讨论分类中的kNN算法,而不关心它在回归中的应用。 2.1 kNN算法概述 简单来说,kNN算法采用测量不同特征值之间的距离进行分类,它是分类数据的一个简单有效的算法。 对上表的补充: - kNN算法是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。 - 它必须保存整个训练集集,...
2018-04-11 19:32:34 294
原创 [学习笔记]机器学习实战(一)
第1章 机器学习基础 机器学习能让我们自数据集中受到启发,换句话说,我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的真实含义。 本系列笔记后续所有代码均使用python3改写。 1.1 何谓机器学习 简单来说,机器学习就是把无序的数据转换成有用的信息。它横跨计算机科学、工程技术和统计学(为了解决无法精确建立数学模型等问题,我们需要用到统计学工具)等多个学科,需要多学科的专业知...
2018-04-10 19:07:07 373
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人