- 博客(13)
- 收藏
- 关注
原创 conda 虚拟环境删除后 jupyter kernal error的后续工作
conda 虚拟环境删除后 jupyter kernal error的后续工作conda虚拟环境删除后,jupyter还是存在kernal change内仍然有原来的虚拟环境名选项接下来需要做的是:使用conda env list 查看目前的虚拟环境列表使用conda remove -n your_env_name(虚拟环境名称) --all 删除指定的虚拟环境使用 jupyter kernelspec list 查看jupyter所有的kernal使用jupyter kernelspec r
2020-06-13 18:20:01 780
原创 Linux常用命令
linux 常用命令收集(持续更新)有关于文件的操作创建新文件 touch xxx.txt空文件输入 echo 'xxxx' > xxx.txt输出文件内容输出全部数据cat xxx.txt输出前10行 cat xxx.txt | head -n 10输出后10行 cat xxx.txt | tail -n 10输出固定行数 cat xxx.txt | sed -n '5...
2018-11-28 11:48:47 177
原创 Keras BUG (持续更新)
#@TOCKeras BUG (持续更新)记录在使用keras中出现的各种问题以及解决方法keras multiple_gpu_model causes “Can’t pickle module object” error多GPU运行模型,其中使用 ModelCheckpoint 回调函数在每个epoch后保存模型,如果参数中没有添加save_weights_only=True则会在第一个...
2018-11-20 18:10:56 458 1
原创 学习笔记 机器学习2.2
参数计算分析——Computing Parameters Analytically==================正规方程——Normal Equation 介绍一种有别于梯度下降算法的算法,正规方程 正规方程——一种直接一次性求解 θθ\theta 的最优值解析。正规方程 算法 已知: 在参数为1D的情况下:J(θ)=aθ2+bθ+cJ(θ)=aθ2...
2018-03-22 20:21:48 197
原创 机器学习2.1
多变量的线性回归——Linear Regresssion with Multiple Variables多变量线性回归——Multivariant Linear Regression多特征——Multiple FeatureNotation nnn = number of features. x(i)x(i)x^{(i)} = input of it...
2018-03-19 16:39:25 248
原创 Machine Learning(未完待续)
SVM本文是有关于吴恩达Machine Learning中SVM部分的笔记,主要有下面内容:SVM定义最大间隔分类器-Large Margin Classification核函数-KernelsSVM操作实例-SVMs in PracticeSVM定义 在机器学习中,支持向量机(Support Vector Machine,简称SVM,又名支持向量网络)是在...
2018-03-14 20:23:09 504
原创 精确率,召回率和F1(未完)
最近看到有关于分类问题的评价标准,涉及到精确率和召回率,在这里做个总结,巩固一下知识。准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure...
2018-03-14 20:21:57 222
原创 概念收集
泛化能力通常将学习方法对未知数据的预测能力称为泛化能力(generalization ability),是学习方法本质上最重要的性质。过拟合过拟合是指学习时选择的模型所包含的参数过多,导致出现这一模型对已知数据预测的很好(训练数据集精确度很高),但是对未知数据预测很差(测试数据集精确度很低)的情况。交叉验证(cross validation)利用交叉验证选择模型简单交叉验证...
2018-03-14 19:44:36 238
原创 机器学习(1.3)
机器学习——参数学习Machine Learning —— Parameter Learning梯度下降算法,可以将代价函数最小化,可用于线性回归 梯度下降算法最小化代价函数J梯度下降——定义Gradient Descent——Definition代价函数:Have some function J(θ0,θ1)J(θ0,θ1)J(\theta_0,\...
2018-03-13 19:46:50 275
原创 机器学习(1.2)
机器学习 —— 模型和代价函数Machine Learning —— Model & Cost Function模型表示 Model Representation——简介以监督学习中的线性回归举例,其中线性回归输入监督学习中的回归模型,目标是对连续样本数值进行预测和建模Notation m –训练样本的个数 x – 输入数据/特征 y – 输出数据/目标数据...
2018-03-09 16:44:02 273
原创 机器学习(1.13)
机器学习-无监督学习Machine Learning - Unsupervised Learning定义算法小结定义无监督学习顾名思义为不受监督的学习,一种自由的学习方式。即,如果所有的训练数据都有标签,则为监督学习。相反,如果所有的训练数据都没有标签,则为无监督学习,也就是聚类(clustering) 监督学习(Supervised Learning)下的数...
2018-03-09 14:08:38 300
原创 机器学习(1.12)
机器学习——监督学习-定义 -算法定义给出一个算法,需要部分数据集已经有正确答案。(自我理解:给定训练集的标签,通过监督学习算法,得到测试集的标签。)Supervised Learning: 'right answer' given监督学习又叫回归问题(回归属于监督中的一种),意指要预测一个连续值的输出。Regression: Predict continuo...
2018-03-08 09:18:23 203
原创 机器学习(1.11)
机器学习——简介(一)简介Introduction模型和损失函数Model and Cost Function参数学习Parameter Learning简介定义 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能; 机器学习是对能通过经验自动改进的计算机算法的研究; 机器学习是用数据或者以往的...
2018-03-08 09:18:08 207
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人