CF463D Gargari and Permutations

题意:
给你k个长度为n的排列,求这些排列的最长公共子序列的长度。
n<=1000,2<=k<=5。
记得之前做过O(n^2)的求两个排列或两个序列的最长公共子序列的长度,现在有5个排列,是n的5次方吗?
观察一下它们之间的拓扑关系。
如果任意两个数,在所有排列中的相对位置均相同,则可以由前一个点向后一个点连一条边,然后在DAG上跑dp即可。
#include <bits/stdc++.h>
using namespace std;
const int N=1e3+5;
int n,k;
int a[N],du[N],dp[N];
bool f[N][N];
int main(){
	scanf("%d%d",&n,&k);
	for (register int i=1; i<=n; ++i)
	for (register int j=1; j<=n; ++j) if (i!=j) f[i][j]=true; 
	while (k--)
	{
		for (register int i=1; i<=n; ++i) scanf("%d",&a[i]);
		for (register int i=2; i<=n; ++i)
		for (register int j=1; j<i; ++j) f[a[j]][a[i]]=false; 
	}
	for (register int i=1; i<=n; ++i)
	for (register int j=1; j<=n; ++j) if (f[i][j]) du[j]++;
	queue<int>q;
	for (register int i=1; i<=n; ++i) if (!du[i]) q.push(i),dp[i]=1;
	while (q.size())
	{
		int u=q.front(); q.pop();
		for (register int i=1; i<=n; ++i)
		if (f[u][i])
		{
			dp[i]=max(dp[i],dp[u]+1);
			du[i]--;
			if (!du[i]) q.push(i);
		}
	}
	int ans=0;
	for (register int i=1; i<=n; ++i) ans=max(ans,dp[i]);
	printf("%d\n",ans);
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值