题意:
给你k个长度为n的排列,求这些排列的最长公共子序列的长度。
n<=1000,2<=k<=5。
记得之前做过O(n^2)的求两个排列或两个序列的最长公共子序列的长度,现在有5个排列,是n的5次方吗?
观察一下它们之间的拓扑关系。
如果任意两个数,在所有排列中的相对位置均相同,则可以由前一个点向后一个点连一条边,然后在DAG上跑dp即可。
#include <bits/stdc++.h>
using namespace std;
const int N=1e3+5;
int n,k;
int a[N],du[N],dp[N];
bool f[N][N];
int main(){
scanf("%d%d",&n,&k);
for (register int i=1; i<=n; ++i)
for (register int j=1; j<=n; ++j) if (i!=j) f[i][j]=true;
while (k--)
{
for (register int i=1; i<=n; ++i) scanf("%d",&a[i]);
for (register int i=2; i<=n; ++i)
for (register int j=1; j<i; ++j) f[a[j]][a[i]]=false;
}
for (register int i=1; i<=n; ++i)
for (register int j=1; j<=n; ++j) if (f[i][j]) du[j]++;
queue<int>q;
for (register int i=1; i<=n; ++i) if (!du[i]) q.push(i),dp[i]=1;
while (q.size())
{
int u=q.front(); q.pop();
for (register int i=1; i<=n; ++i)
if (f[u][i])
{
dp[i]=max(dp[i],dp[u]+1);
du[i]--;
if (!du[i]) q.push(i);
}
}
int ans=0;
for (register int i=1; i<=n; ++i) ans=max(ans,dp[i]);
printf("%d\n",ans);
return 0;
}