为何要用整体二分,整体二分应该怎样二分,和[POI2011]MET-Meteors十分相像,这里就不再重复。
我们现在只需要考虑如何判断每位顾客能否喝到满意的果汁即可。我们二分答案mid以后,将大于等于mid的用线段树维护。怎么维护呢 ?我们按价格建线段树,并在线段树中维护区间总份数,区间总价格这两个值。
那么对于一个顾客来讲,如果当前的区间总份数小于他想要的份数,或者是区间最小价格大于他能接受的最大价格,就把该顾客划分到右区间,如若满足则划分到左区间。
想要和[POI2011]MET-Meteors一样对于每个solve只做l-mid的修改操作,发现不可行;但若不这样修改,又会超时。
所以我们改变一个枚举的方式:记录一个变量t,表示当前已经修改过的区间为[1,t]。这样就可以使得前半个区间不进行 多次修改再复原,修改再复原 这样的无意义操作了。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+5;
int n,m,t;
int ans[N],money[N<<2],sum[N<<2];
struct number{int d,p,l;}num[N];
struct node{int g,l,id;}q[N],q1[N],q2[N];
inline bool cmp(number a,number b){return a.d>b.d;}
void change(int k,int l,int r,int p,int v)
{
if (l==p && p==r)
{
money[k]=money[k]+p*v;
sum[k]=sum[k]+v;
return;
}
int mid=l+r>>1;
if (p<=mid) change(k<<1,l,mid,p,v);
else change(k<<1|1,mid+1,r,p,v);
money[k]=money[k<<1]+money[k<<1|1];
sum[k]=sum[k<<1]+sum[k<<1|1];
}
int query(int k,int l,int r,int x)
{
if (l==r) return l*x;
int mid=l+r>>1;
if (x<=sum[k<<1]) return query(k<<1,l,mid,x);
else return money[k<<1]+query(k<<1|1,mid+1,r,x-sum[k<<1]);
}
void solve(int ql,int qr,int l,int r)
{
if (ql>qr) return;
if (l==r)
{
for (register int i=ql; i<=qr; ++i) ans[q[i].id]=l;
return;
}
int mid=l+r>>1;
while (t<mid)
{
t++;
change(1,1,100000,num[t].p,num[t].l);
}
while (t>mid)
{
change(1,1,100000,num[t].p,-num[t].l);
t--;
}
int p1=0,p2=0;
for (register int i=ql; i<=qr; ++i)
{
if (q[i].l>sum[1]) q2[++p2]=q[i];
else if (query(1,1,100000,q[i].l)>q[i].g) q2[++p2]=q[i];
else q1[++p1]=q[i];
}
for (register int i=1; i<=p1; ++i) q[ql+i-1]=q1[i];
for (register int i=1; i<=p2; ++i) q[ql+p1+i-1]=q2[i];
solve(ql,ql+p1-1,l,mid);
solve(ql+p1,qr,mid+1,r);
}
signed main(){
scanf("%lld%lld",&n,&m);
for (register int i=1; i<=n; ++i) scanf("%lld%lld%lld",&num[i].d,&num[i].p,&num[i].l);
n++;
num[n].d=-1; num[n].p=0; num[n].l=1e18;
sort(num+1,num+n+1,cmp);
for (register int i=1; i<=m; ++i) scanf("%lld%lld",&q[i].g,&q[i].l),q[i].id=i;
t=0;
solve(1,m,1,n);
for (register int i=1; i<=m; ++i) printf("%lld\n",num[ans[i]].d);
return 0;
}