电网管理中的分层决策
matlab源代码,代码按照高水平文章复现,保证正确
电网管理是一个多时间尺度决策和随机行为的难题。
在面对不确定性的情况下解决这一问题需要一种具有易于处理的算法的新方法。
引入了一个新的复杂系统的层次决策模型。
我们应用强化学习(RL)方法来用于实时电网可靠性。
我们设计了一个在慢时间尺度策略改进和快时间尺度值函数近似之间交替的算法。
提出了一个交错的双mdp模型,启发了电网可靠性管理的层次决策问题。
提出的IAPI算法在改进DA策略和学习RT可靠性值之间交替使用。
我们实验中的IEEE RTS-96网络是一个足够大的网络,可以捕获真实网络中出现的计算复杂性。
模型可以适用于其他需要高可靠性和可持续性的不同时间尺度的具有层次决策结构的重要应用。
ID:31200638268891543
SourseCode
电网管理中的分层决策
电网管理是一个多时间尺度决策和随机行为的难题。在面对不确定性的情况下解决这一问题需要一种具有易于处理的算法的新方法。为此,引入了一个新的复杂系统的层次决策模型。本文旨在应用强化学习(RL)方法来用于实时电网可靠性,以解决电网管理中的分层决策。
我们设计了一个在慢时间尺度策略改进和快时间尺度值函数近似之间交替的算法。该算法以交错的双mdp模型为基础,启发了电网可靠性管理的层次决策问题。它被称为IAPI算法,其核心思想是在改进分布式自适应(DA)策略和学习实时(RT)可靠性值之间进行交替使用。
为了验证我们提出的算法的有效性,我们在实验中采用了IEEE RTS-96网络作为测试网络。该网络具有足够的规模,能够捕获真实网络中出现的计算复杂性。通过将我们的模型应用于该网络,我们得出结论:我们的算法可以应用于其他需要高可靠性和可持续性的具有层次决策结构的重要应用。
在我们的研究中,我们重点关注了电网管理中的分层决策问题。我们提出的IAPI算法为电网管理提供了一种新的解决方案。它结合了慢时间尺度的策略改进和快时间尺度的值函数近似,从而在保证电网可靠性的同时提高了决策的效率。
在IAPI算法中,我们通过交替使用DA策略改进和RT可靠性值学习来实现层次决策。通过这种方式,我们能够更好地适应电网管理中的不确定性和随机性,从而提高整个系统的可靠性和鲁棒性。
总之,本文提出了一个基于强化学习方法的IAPI算法,用于解决电网管理中的分层决策问题。通过在慢时间尺度和快时间尺度之间交替使用策略改进和值函数学习,我们能够有效地提高电网的可靠性和决策的效率。我们的实验结果表明,该算法在应对电网管理中的不确定性和随机性方面具有很好的性能。我们相信,这个算法可以为其他需要层次决策的应用领域提供有力的支持,并促进这些领域的可持续发展。
相关的代码,程序地址如下:http://imgcs.cn/638268891543.html