HDU 1542 Atlantis 【线段树+扫描线】

7 篇文章 0 订阅
1 篇文章 0 订阅

题目链接
segment tree, scanning line

题意

矩形面积的并

分析

最基础的扫描线求矩形面积并的题,离散化后用线段树,这个思想很简单,不再赘述。记录在这里主要是这个线段树的写法,适用于区间反复覆盖,RE了很多次,记在这里方便以后查看。

AC代码

//HDU 1542 Atlantis
//AC 2016-10-19 22:33:31
//Segment tree, scan line
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <set>
#include <string>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <sstream>
#include <stack>
using namespace std;

#define cls(x) memset(x,0,sizeof x)
#define inf(x) memset(x,0x3f,sizeof x)
#define neg(x) memset(x,-1,sizeof x)
#define ninf(x) memset(x,0xc0,sizeof x)
#define st0(x) memset(x,false,sizeof x)
#define st1(x) memset(x,true,sizeof x)
#define lowbit(x) x&(-x)
#define input(x) scanf("%d",&(x))
#define inputt(x,y) scanf("%d %d",&(x),&(y))
#define bug cout<<"here"<<endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")//stack expansion
//#define debug
const double PI=acos(-1.0);
const int INF=0x3f3f3f3f;//1061109567-2147483647
const long long LINF=0x3f3f3f3f3f3f3f3f;//4557430888798830399-9223372036854775807
const int maxn=200;

int n,p1;
double pos[2*maxn];

void discrete()
{
    sort(pos,pos+2*n);
    p1=0;
    for(int i=0;i<2*n;++i)
        if(pos[p1]!=pos[i])
            pos[++p1]=pos[i];
    return;
}

struct edge
{
    double a,b,x;
    int side;
    bool operator< (const edge &rhs) const
    {
        return x<rhs.x;
    }
}edges[2*maxn];

/* 线段树 */
struct segNode
{
    int left,right;//结点对应的区间端点
    /*结点的性质*/
    double len;
    int lazy;
};

struct segTree
{
    segNode tree[maxn*4+10];
    /* 由子结点回溯 */
    void Push_Up(int x)
    {
        tree[x].len=tree[x<<1].len+tree[x<<1|1].len;
        return;
    }
    /* 向下更新 */
    void Push_Down(int x)
    {
        if(tree[x].lazy)
        {
            tree[x<<1].len=pos[tree[x<<1].right+1]-pos[tree[x<<1].left];
            tree[x<<1|1].len=pos[tree[x<<1|1].right+1]-pos[tree[x<<1|1].left];
            tree[x<<1].lazy+=tree[x].lazy;
            tree[x<<1|1].lazy+=tree[x].lazy;
            tree[x].lazy=0;
        }
    }
    /* 线段树构造函数 */
    void build(int x,int left,int right)
    {
        tree[x].left=left;
        tree[x].right=right;
        tree[x].len=0;
        tree[x].lazy=0;
        if(left==right)//只有一个元素时
            return;
        /*递归构造子树*/
        int mid=(left+right)>>1;
        build(x<<1,left,mid);
        build(x<<1|1,mid+1,right);
        /* 回溯构造 */
        Push_Up(x);
        return;
    }
    /* 成段更新 */
    void update(int x,int start,int endd,int v)
    {
        if(start==tree[x].left&&endd==tree[x].right&&tree[x].lazy+v>=0)
        {
            if(tree[x].lazy+v>=0)
            {
                tree[x].lazy+=v;
                v=0;
            }
            else
            {
                v+=tree[x].lazy;
                tree[x].lazy=0;
            }
            if(tree[x].lazy)
                tree[x].len=pos[tree[x].right+1]-pos[tree[x].left];
            else if(start==endd)
                tree[x].len=0;
            else
                Push_Up(x);
            if(!v)
                return;
        }
        Push_Down(x);//需要子节点的真实信息
        int mid=(tree[x].left+tree[x].right)>>1;
        if(endd<=mid)//更新区间完全在左子结点中
            update(x<<1,start,endd,v);
        else if(start>mid)//更新区间完全在右子结点中
            update(x<<1|1,start,endd,v);
        else
        {
            update(x<<1,start,mid,v);
            update(x<<1|1,mid+1,endd,v);
        }
        Push_Up(x);//回溯更新
    }
}area;


int main()
{
    //ios::sync_with_stdio(false);
    //cin.tie(0);
    #ifdef debug
        freopen("E:\\Documents\\code\\input.txt","r",stdin);
        freopen("E:\\Documents\\code\\output.txt","w",stdout);
    #endif
    //IO
    for(int kase=1;input(n)!=EOF&&n;++kase)
    {
        for(int i=0;i<n;++i)
        {
            scanf("%lf%lf%lf%lf",&edges[i<<1].x,&pos[i<<1],&edges[i<<1|1].x,&pos[i<<1|1]);
            edges[i<<1].a=edges[i<<1|1].a=pos[i<<1];
            edges[i<<1|1].b=edges[i<<1].b=pos[i<<1|1];
            edges[i<<1].side=1;
            edges[i<<1|1].side=-1;
        }
        discrete();
        sort(edges,edges+2*n);
        area.build(1,0,p1);
        double ans=0;
        int e1,e2;
        for(int i=0;i<2*n-1;++i)
        {
            e1=lower_bound(pos,pos+p1+1,edges[i].a)-pos;
            e2=lower_bound(pos,pos+p1+1,edges[i].b)-pos-1;
            area.update(1,e1,e2,edges[i].side);
            ans+=(edges[i+1].x-edges[i].x)*area.tree[1].len;
        }
        printf("Test case #%d\nTotal explored area: %.2f\n\n",kase,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值