day05-多任务-正则-装饰器

一、多任务

1-进程和线程

进程是操作系统分配资源的最小单元

线程执行程序的的最小单元

线程依赖进程,可以获取进程的资源


一个程序执行 先要创建进程分配资源,然后使用线程执行任务

默认情况下一个进程中有一个线程

2-多任务介绍

运行多个进程或线程执行代码逻辑

多个进程或线程同时执行叫做并行执行

多个进程或线程交替执行叫做并发执行

必行还是并发有cpu个数决定

5个进程 cpu核心是3个 计算时时并发执行 5个进程需要抢占cpu资源,谁抢到谁执行代码计算

5个进程 cpu核心10个 计算时时并行执行 不需要抢占资源,没个进程都已一个独立的cpu核心使用完成计算

多任务在执行计算时,可以执行的同一的计算任务,也可以执行不同的任务

3-多进程

多进程实现多任务就是创建多个进程执行任务函数

任务1 唱歌 任务2 跳舞 任务3 弹吉他

不使用多任务执行

程序执行顺序是从上往下依次执行,如果上一个函数没有执行完成,那么下一个函数,不会被执行

使用多进程实现多任务

import time
from multiprocessing import Process
​
def cook():
    print('做饭')
    time.sleep(4)
    print('饭已做好')
​
def clean():
    print('扫地')
    time.sleep(4)
    print('打扫完成')
​
def play():
    print('玩游戏')
​
if __name__ == '__main__':
    # 创建进程
    p1 = Process(target=cook)
    p2 = Process(target=clean)
    p3 = Process(target=play)
​
​
    # 执行进程
    p1.start()
    p2.start()
    p3.start()

I-任务中的参数传递
import time
from multiprocessing import Process
​
def cook(name):
    print(f'做{name}')
    time.sleep(4)
    print('饭已做好')
​
def clean(a,b,c):
    print(f'打扫{a},{b},{c}')
    time.sleep(4)
    print('打扫完成')
​
def play(name):
    print(f'玩{name}游戏')
​
if __name__ == '__main__':
    # 创建进程
    p1 = Process(target=cook,args=['红烧肉'])
    p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})
    p3 = Process(target=play,args=['dota'])
​
​
    # 执行进程
    p1.start()
    p2.start()
    p3.start()
II-获取进程编号
  • getpid

  • getppid

import time
from multiprocessing import Process
import os
def cook(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前子进程编号{num}')
​
    # 获取父进程编号
    p_num = os.getppid()
    print(f'当前子进程父进程编号{p_num}')
​
    print(f'做{name}')
    time.sleep(4)
    print('饭已做好')
​
def clean(a,b,c):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前子进程编号{num}')
    # 获取父进程编号
    p_num = os.getppid()
    print(f'当前子进程父进程编号{p_num}')
​
    print(f'打扫{a},{b},{c}')
    time.sleep(4)
    print('打扫完成')
​
def play(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前子进程编号{num}')
    # 获取父进程编号
    p_num = os.getppid()
    print(f'当前子进程父进程编号{p_num}')
​
​
    print(f'玩{name}游戏')
​
if __name__ == '__main__':
    # 创建子进程
    p1 = Process(target=cook,args=['红烧肉'])
    p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})
    p3 = Process(target=play,args=['dota'])
    # 执行进程
    p1.start()
    p2.start()
    p3.start()
​
    # 主进程自己的任务
    print('主进程')
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前主进程编号{num}')

主进程默认情况下是等待子进程结束后在结束整个进程的

也可以通过exit()方法强制退出主进程,所有进程都结束

III-保证进程的执行顺序

会影响执行效率

如果进程之间没有对应的数据传递关系,可以不用保证顺序,多个进程可以同时执行

如果进程之间有数据传递需求,就要保证执行顺序,通过join操作,但是该操作会影响执行效率

import time
from multiprocessing import Process
import os
def cook(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前子进程编号{num}')
​
    # 获取父进程编号
    p_num = os.getppid()
    print(f'当前子进程父进程编号{p_num}')
​
    print(f'做{name}')
    time.sleep(4)
    print('饭已做好')
​
def clean(a,b,c):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前子进程编号{num}')
    # 获取父进程编号
    p_num = os.getppid()
    print(f'当前子进程父进程编号{p_num}')
​
    print(f'打扫{a},{b},{c}')
    time.sleep(4)
    print('打扫完成')
​
def play(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前子进程编号{num}')
    # 获取父进程编号
    p_num = os.getppid()
    print(f'当前子进程父进程编号{p_num}')
​
​
    print(f'玩{name}游戏')
​
if __name__ == '__main__':
    # 创建子进程
    p1 = Process(target=cook,args=['红烧肉'])
    p2 = Process(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})
    p3 = Process(target=play,args=['dota'])
    # 执行进程
    p1.start()
    # 使用jion方法保证执行顺序  变成单任务
    p1.join()
    p2.start()
    p2.join()
    p3.start()
    p3.join()
​
    # 主进程自己的任务
    print('主进程')
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前主进程编号{num}') 
IV-进程间的数据不共享

每个进程的资源时独立。数据就不共享

from multiprocessing import Process
a = 1
​
​
def func1():
    global a
    a = a + 1
    print(f'子进程1中的a:{a}')
​
​
def func2():
    global a
    a = a + 1
    print(f'子进程2中的a:{a}')
​
​
if __name__ == '__main__':
​
    # 创建进程
    p1 = Process(target=func1)
    p2 = Process(target=func2)
​
    p1.start()
    p2.start()
​
    print(f'主进程中的a:{a}')

4-多线程

线程依赖进程,可以创建一个进程,在一个进程下创建多个线程执行任务

# 多线程实现多任务
import time
from threading import Thread
import os
def cook(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前进程编号{num}')
​
    print(f'做{name}')
    time.sleep(4)
    print('饭已做好')
​
def clean(a,b,c):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前进程编号{num}')
​
    print(f'打扫{a},{b},{c}')
    time.sleep(4)
    print('打扫完成')
​
def play(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前进程编号{num}')
​
    print(f'玩{name}游戏')
​
if __name__ == '__main__':
​
    # 创建线程
    t1 = Thread(target=cook,args=['梅菜扣肉'])
    t2 = Thread(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})
    t3 = Thread(target=play,args=['魔兽世界'])
​
    t1.start()
​
    t2.start()
​
    t3.start()
​
​
    num = os.getpid()
    print(f'当前进程编号{num}')
线程任务传参
# 多线程实现多任务
import time
from threading import Thread
import os
def cook(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前进程编号{num}')
​
    print(f'做{name}')
    time.sleep(4)
    print('饭已做好')
​
def clean(a,b,c):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前进程编号{num}')
​
    print(f'打扫{a},{b},{c}')
    time.sleep(4)
    print('打扫完成')
​
def play(name):
    # 使用os模块获取当前进程编号
    num = os.getpid()
    print(f'当前进程编号{num}')
​
    print(f'玩{name}游戏')
​
if __name__ == '__main__':
​
    # 创建线程
    t1 = Thread(target=cook,args=['梅菜扣肉'])
    t2 = Thread(target=clean,kwargs={'a':'客厅','b':'厨房','c':'卧室'})
    t3 = Thread(target=play,args=['魔兽世界'])
​
    t1.start()
​
    t2.start()
​
    t3.start()
​
​
    num = os.getpid()
    print(f'当前进程编号{num}')
线程执行任务顺序保证

线程的执行顺序也是无序的,如果需要保证线程执行顺讯也是通过join保证

from threading import Thread
import os
def sing(username,singname):
    print(f'线程1的编号{os.getpid()}')
    print(f'唱{username}的{singname}歌')
​
def dance(name):
    print(f'线程2的编号{os.getpid()}')
    print(f'跳{name}舞')
​
​
def tanzou():
    print(f'线程3的编号{os.getpid()}')
    print('弹吉他')
​
if __name__ == '__main__':
    # 创建线程传递参数
    t1 = Thread(target=sing,kwargs={'username':'凤凰传奇','singname':'月亮之上'})
    t2 = Thread(target=dance,args=['圆桌舞'])
    t3 = Thread(target=tanzou)
​
    t1.start()
    t1.join()
    t2.start()
    t2.join()
    t3.start()
    t3.join()

线程键共享数据

多个线程是在一个进程下运行,他们可以使用同一个进程下的资源

from threading import Thread
a = 1
​
​
def func1():
    global a
    a = a + 1
    print(f'线程中的a:{a}')
​
​
def func2():
    global a
    a = a + 1
    print(f'线程中的a:{a}')
​
​
if __name__ == '__main__':
​
    # 创建进程
    t1 = Thread(target=func1)
    t2 = Thread(target=func2)
​
    t1.start()
    t2.start()
​
    print(f'主进程中的a:{a}')

当共享数据是,多个线程操作同一个数据,那么有可能会因为资源抢占造成计算错误

可以通过join保证数据能完整计算

from threading import Thread
a = 0
​
​
def func1():
    global a
    for i in range(1000000):
        a = a + 1
    print(f'func1线程中的a:{a}')
​
​
def func2():
    global a
    for i in range(1000000):
        a = a + 1
    print(f'func2线程中的a:{a}')
​
​
if __name__ == '__main__':
​
    # 创建进程
    t1 = Thread(target=func1)
    t2 = Thread(target=func2)
​
    t1.start()
    t1.join()
    t2.start()
    t2.join()
​
    print(f'主进程中的a:{a}')

5-多任务总结

进程和线程

进程是分配资源的最小单元 线程是执行任务的最小单元

实现多任务可以使用多进程或多线

为什么要使用多任务?

提升计算效率,当cpu资源充足是,可以实现多个任务同时执行。

后续spark底层实现采用的多线程方式,spark计算效率很高。spark已经封装实现,开发不需要写多线程。

mapreduce的计算是使用多进程方式实现多任务

实际开发为什么不用多进程实现多任务?更多是采用多线程?

创建进程的开销加大,创建时间长。每创建一个进程都需要额外有计算机分配资源,分配资源也会耗费时间

多进程间不共享数据

多线程会共享数据,如果发生资源抢占会造成数据计算错误

主进程会等到所有任务结束后再结束

二、闭包

在一个函数中定义一个新的函数,把内部函数 当成返回值进行返回,就是一个闭包

使用闭包是为了保存函数的中的局部变量数据

默认情况下 函数执行结束后,内部的局部变量对应的数据会被清除

想保留数据就需要借助闭包

# 局部变量的销毁问题
​
def func():
    # 局部变量
    a = 10
    a = a+1
    print(a)
​
func() # 函数调用结束后内部局部变量会自动销毁
func() # 第二次调用函数时,会重新定义局部变量,重新计算
​
print('---------------------------')
# 使用闭包可以将局部变量保存下来,每次调用函数时,使用同一个局部变量操作
# 闭包的格式是函数的嵌套定义
def func1():
    # 定义局部变量
    a = 10
    def func2():
        # 内部声明局部变量
        nonlocal a
        a = a+1
        print(a)
    # 将内部定义的函数名返回
    return func2
​
f2 = func1() # f2=func2
# 使用加法计算
f2()
f2()
​

定义闭包

1-要有函数嵌套定义

2-必须将内部函数的名称返回

使用闭包的场景

1-计数器

2-装饰器

三、装饰器

在不改变原有函数的基础上增加新的业务逻辑

1-闭包

2-函数可以当成参数传递

# 使用闭包定义装饰器
def func1(f):
    # 外部函数定义接受参数,参数的类型要求是其他函数
    # f需要接受其他函数,就是需要装饰修改逻辑的函数
    def func2():
        # 调用之前增加登录判断
        print('登录成功')
        # 调用需要修改执行的函数
        f()
    # 返回内部函数
    return func2
​
# 支付功能已经编写完成,不能再随意修改,如果此时需要再支付中增加一个登录判断如何实现
def pay():
    print('支付')
# 调用装饰器
f2 = func1(pay) # f=pay  f2 = func2
f2()
​
def order():
    print('下单')

  • 被装饰的函数数据返回

def login(f):
    """
        登录装饰器
    :param f: 接收被装饰的函数
    :return:
    """
    def inner(name, password):
        # 编写登录逻辑
        if name == '张三':
            if password == '123456':
                print('登录成功')
                # 登录成执行被装饰的函数
                # 可以给传递数据和接收返回值
                res= f(1000)
                print(res)
            else:
                print('密码错误')
        else:
            print('用户名错误')
​
    return inner
​
def pay(price):
    print('订单支付逻辑')
    print(f'支付金额{price}')
    return '支付成功'
​
# 使用装饰器装饰支付函数
f = login(pay)
# f = inner
f('张三','123456')
  • 采用语法糖格式使用装饰器

    • 语法糖格式 @装饰器函数名

def login(f):
    """
        登录装饰器
    :param f: 接收被装饰的函数
    :return:
    """
    def inner(name, password,price):
        # 编写登录逻辑
        if name == '张三':
            if password == '123456':
                print('登录成功')
                # 登录成执行被装饰的函数
                res= f(price)
                print(res)
            else:
                print('密码错误')
        else:
            print('用户名错误')
​
    return inner
​
# 使用语法糖
@login
def pay(price):
    print('订单支付逻辑')
    print(f'支付金额{price}')
    return '支付成功'
​
# 调用被装饰的函数
# 此时pay函数变成了inneer函数
pay('张三','123456',1000)

四、正则

采用正则的方式匹配字符串的中的数据,可以进行数据的判断或则获取数据

在读取文件数据时,文件中都是字符串,可以使用正则匹配。

正则最多的应用是爬虫

爬虫会爬取网络中的数据,数据是字符串类型,需要提取字符串中的数据

使用正则处理字符串数据需要导入对应的模块

import re

# match的匹配是从首字符开始匹配   从左到右一次匹配字符串中的每个字符
r=re.match('匹配数据的规则','匹配的数据本身,类型是字符')
# 获取匹配结果
data = r.group()
print(data)

匹配单个字符

# 使用正则匹配单个字符
import re
# 需要匹配的数据,类型是字符串
data = '!123itcast'
# .的匹配 匹配非\n
r = re.match('.',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'. 的正则匹配结果:{res}')
​
# [] 匹配 可以在括号写多个匹配字符 a-z 匹配所有小写字母
r = re.match('[a-zA-Z0-9!]',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'[] 的正则匹配结果:{res}')
​
# \d 匹配数字
# r = re.match('\d',data)
# # 获取匹配的数据
# res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
# print(f'\d 的正则匹配结果:{res}')
​
# \D
r = re.match('\D',data)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\D 的正则匹配结果:{res}')
​
data_str2 = '   itcast'
r = re.match('\s',data_str2)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\s 的正则匹配结果:{res}')
​
​
data_str3 ='你好'
r = re.match('\w',data_str3)
# 获取匹配的数据
res = r.group()# 如果匹配到数据则返回结果 如果匹配不到则会报错
print(f'\w 的正则匹配结果:{res}')

匹配多个字符

# 匹配多个字符
import re
# 书写方法 匹配规则+  匹配规则*  ...
​
data_str = 'itc99ast99python'
# 使用* 匹配多个字符
# 只要符合匹配规则会一直连续匹配
# * 匹配不到 返回空字符
r = re.match('\d*',data_str)
res = r.group()
print(res)
​
# 使用+匹配多个字符
# 只要符合匹配规则会一直连续匹配
# + 匹配不到 报错
r = re.match('\D+',data_str)
res = r.group()
print(res)
​
# {}指定匹配的字符串个数
r = re.match('\D{3}',data_str)
res = r.group()
print(res)
​
# {m,n}
r = re.match('\D{2,4}',data_str)
res = r.group()
print(res)

分组匹配

data_email1 = '1928738@qq.com'
data_email2 = 'jqiowe@163.com'
data_email3 = 'jqi_wqe@163.com'
# 匹配用户名和邮箱名
r = re.match('(\w*)@(\w*).com',data_email3)
# 取匹配的分组数据
username = r.group(1)
print(username)
emailname = r.group(2)
print(emailname)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值