通俗的讲解什么是机器学习之损失函数

本文探讨了机器学习中的关键概念,如在靶心射击游戏中比喻的损失函数,它衡量预测值与真实值的差距。训练数据包含输入特征和标签,模型则基于这些数据进行预测,目标是通过最小化损失函数提升预测准确性。
摘要由CSDN通过智能技术生成

想象一下,你在玩一个靶心射击的游戏,你的目标是尽可能让箭簇命中靶心。在这个游戏中,损失函数可以看作是测量你的箭簇与靶心距离的规则。损失函数的值越小,意味着你的箭簇离靶心越近,你的射击技能越好。

在机器学习中,这个过程是这样的:

  1. 训练数据:你有大量的数据,这些数据包括了输入(特征)和输出(标签,即真实值)。

  2. 模型:你有一个模型,它可以根据输入数据做出预测。

  3. 损失函数:你需要一个方法来衡量模型的预测值与真实值之间的差距。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华农DrLai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值