想象一下,你在玩一个靶心射击的游戏,你的目标是尽可能让箭簇命中靶心。在这个游戏中,损失函数可以看作是测量你的箭簇与靶心距离的规则。损失函数的值越小,意味着你的箭簇离靶心越近,你的射击技能越好。
在机器学习中,这个过程是这样的:
-
训练数据:你有大量的数据,这些数据包括了输入(特征)和输出(标签,即真实值)。
-
模型:你有一个模型,它可以根据输入数据做出预测。
-
损失函数:你需要一个方法来衡量模型的预测值与真实值之间的差距。
想象一下,你在玩一个靶心射击的游戏,你的目标是尽可能让箭簇命中靶心。在这个游戏中,损失函数可以看作是测量你的箭簇与靶心距离的规则。损失函数的值越小,意味着你的箭簇离靶心越近,你的射击技能越好。
在机器学习中,这个过程是这样的:
训练数据:你有大量的数据,这些数据包括了输入(特征)和输出(标签,即真实值)。
模型:你有一个模型,它可以根据输入数据做出预测。
损失函数:你需要一个方法来衡量模型的预测值与真实值之间的差距。