距离与范数

向量范数与矩阵范数的理解_a和a的范数的大小关系_jack_20的博客-CSDN博客

L-P范数

L-P范数不是一个范数,是一组范数

L_{p}=\left \| x \right \|_{p}=\sqrt[p]{\sum_{i=1}^{n}x_{i}^{P}}, x=(x_{1},x_{2},\cdots ,x_{n})

L-0范数

当P=0,即L0范数(实际并非一个真正范数),主要用来度量向量中非零元素个数,

L1范数——曼哈顿距离

 表示向量中非零元素的绝对值之和

L1=\left \| x \right \|_{1}=\sum_{i=1}^{n}\left | x_{i} \right |

欧几里得空间的固定直角坐标系上两点所形成的线段对轴产生的投影的距离总和

L2范数——欧氏距离

表示向量元素的平方和再开平方。L2范数又称Eucloidean范数或者Frobenius范数

L2=\left \| x \right \|_{2}=\sqrt{\sum_{i=1}^{2}x_{i}^{2}} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值