中保研碰撞测试成绩排名查看汇总版(详细,持续更新)

因为本人最近要买车,然后微博上有个中保研特别火,我就查了一下,然后整理了这个榜单,随时更新~~~~

截至2020年02月20日,中保研碰撞测试成绩汇总如下:

以下数据会不断更新,发布在: zhongbaoyan.github.io 点我访问  , 欢迎收藏博文


碰撞成绩分为四档:
G 优秀
A 良好
M 一般
P 较差

虽然同为G,G之间也有差异,下面是根据官网评价规程转换的详细分数:

一、正面偏置碰撞详细成绩


二、侧面碰撞详细成绩


三、车顶强度详细成绩

即将测试

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据集+训练好的模型基于深度学习CNN网络+pytorch框架实现
据了解,数据库中的视图是一个虚拟表格,它是基于存储的表或其他视图的查询结果。视图被用来简化复杂的查询操作并保护数据安全性,只显示用户所需要的数据。在设计师为user表创建一个usel视图时,数据字典中应该保留有关该视图的相关信息。 首先,数据字典是一个描述数据库中数据元素及其关系的元数据集合。在数据字典中,会包括对各个数据库对象的描述,如表、视图、列等。因此,在为user表创建usel视图后,数据字典中应该记录该视图的名称(usel)以及所基于的原表(user)。 其次,数据字典中还应该记录与视图相关的权限信息。视图的权限控制可以限制特定用户或角色对数据的访问权限。因此,数据字典中应该包括usel视图的访问权限信息,如哪些用户或角色有权访问、对视图的读写权限等。 另外,数据字典还可以包含有关视图的统计信息。这些统计信息包括视图的行数、列数、索引信息等,可以帮助数据库优化器选择最佳执行计划,并提高查询性能。 最后,数据字典中还可以记录与视图相关的注释信息。注释可以提供有关视图的额外说明或描述,方便其他开发人员理解和使用。 综上所述,在为user表创建一个usel视图后,数据字典中应该保留有关该视图的名称、基于的原表、权限信息、统计信息以及注释等相关信息,以便设计师和其他用户可以查阅和了解这个视图的详细信息。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值