【题目】
CF
给定一棵
n
n
n个节点的树,定义
d
x
,
i
d_{x,i}
dx,i表示子树内和
x
x
x距离为
i
i
i的节点数,对每个
x
x
x求使得
d
x
,
i
d_{x,i}
dx,i最大的
i
i
i,若有多个输出最小的。
n
≤
1
0
6
n\leq 10^6
n≤106
【解题思路】
一个简单的状态转移就是
d
x
,
i
=
∑
v
∈
s
o
n
x
d
v
,
i
−
1
d_{x,i}=\sum_{v\in son_x}d_{v,i-1}
dx,i=∑v∈sonxdv,i−1。由于第二维和深度有关,我们考虑对这棵树长链剖分,那么链上信息可以用指针
O
(
1
)
O(1)
O(1)转移,链与链之间的转移直接暴力即可。
复杂度
O
(
n
)
O(n)
O(n)
【参考代码】
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,tot,head[N];
int len[N],son[N],g[N],*f[N],*id=g,ans[N];
int read()
{
int ret=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) ret=ret*10+(c^48),c=getchar();
return ret;
}
struct Tway{int v,nex;}e[N<<1];
void add(int u,int v)
{
e[++tot]=(Tway){v,head[u]};head[u]=tot;
e[++tot]=(Tway){u,head[v]};head[v]=tot;
}
void dfs(int x,int ff)
{
for(int i=head[x];i;i=e[i].nex)
{
int v=e[i].v;
if(v==ff) continue;
dfs(v,x);if(len[v]>len[son[x]]) son[x]=v;
}
len[x]=len[son[x]]+1;
}
void dp(int x,int ff)
{
f[x][0]=1;
if(son[x]) f[son[x]]=f[x]+1,dp(son[x],x),ans[x]=ans[son[x]]+1;
for(int i=head[x];i;i=e[i].nex)
{
int v=e[i].v;
if(v==ff || v==son[x]) continue;
f[v]=id;id+=len[v];dp(v,x);
for(int j=1;j<=len[v];++j)
{
f[x][j]+=f[v][j-1];
if((j<ans[x] && f[x][j]>=f[x][ans[x]]) || (j>ans[x] && f[x][j]>f[x][ans[x]])) ans[x]=j;
}
}
if(f[x][ans[x]]==1) ans[x]=0;
}
int main()
{
#ifdef Durant_Lee
freopen("CF1009F.in","r",stdin);
freopen("CF1009F.out","w",stdout);
#endif
n=read();
for(int i=1;i<n;++i) add(read(),read());
dfs(1,0);f[1]=id;id+=len[1];dp(1,0);
for(int i=1;i<=n;++i) printf("%d\n",ans[i]);
return 0;
}