省份数量
有 n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。
省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。
给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。
返回矩阵中 省份 的数量。
示例 1:
输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2
示例 2:
输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3
提示:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j] 为 1 或 0
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]
关键词: 连通分量、无向图、dfs遍历
又是靠题解做题的一天。
一开始就想到这是一个并查集的题,但我还不会写并查集的码,所以就还用dfs做。问题是多多少少会受昨天那个题的影响,一直在想着递归回溯什么的。
但事实上,这个题根本不需要回溯,它的本质还是一个找连通分量的题,贪心算法把每个节点找到底就好了,过程中需要添加判断去除一些寻找重复的结点。
class Solution {
public:
int countMax = 0;
vector<int> visited;
void dfs(vector<vector<int>>& isConnected, int i) {
for (int j = 0; j < isConnected.size(); j++) {
if (visited[j] == 0 && isConnected[i][j]) {
visited[j] = 1;
dfs(isConnected, j);
}
}
}
int findCircleNum(vector<vector<int>>& isConnected) {
visited.resize(isConnected.size());
for (int i = 0; i < isConnected.size(); i++) {
if (visited[i] == 0) {
dfs(isConnected, i);
countMax++;
}
}
return countMax;
}
};