BZOJ1087 SCOI2005 互不侵犯King 【状压DP】

114 篇文章 0 订阅
46 篇文章 0 订阅

BZOJ1087 SCOI2005 互不侵犯King


Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16


我们先预处理出哪些状态是合法的,即一个二进制状态没有连续的1,然后再预处理出哪些状态是可以相互转化的,即对于x状态i位有国王,y状态的第i-1,i,i+1位都不能有国王,然后再DP一下就好了,最后统计答案


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define LL long long
#define N 1000
LL dp[10][100][N],cnt[N];
bool vis[N],g[N][N];
int main(){
    LL n,m;scanf("%lld%lld",&n,&m);
    LL up=(1<<n)-1;
    for(LL i=0;i<=up;i++)
        if(((i>>1)&i)==0){
            for(LL j=i;j;j>>=1)cnt[i]+=(j&1);
            vis[i]=1;
        }
    for(LL i=0;i<=up;i++)if(vis[i])
        for(LL j=0;j<=up;j++)if(vis[j])
            if((i&j)==0&&((i>>1)&j)==0&&((i<<1)&j)==0)
                g[i][j]=1;
    for(LL i=0;i<=up;i++)if(vis[i])dp[1][cnt[i]][i]=1;
    for(LL i=2;i<=n;i++)
        for(LL j=0;j<=up;j++)if(vis[j])
            for(LL k=0;k<=up;k++)if(vis[k]&&g[j][k])
                for(LL l=cnt[j];l+cnt[k]<=m;l++)
                    dp[i][l+cnt[k]][k]+=dp[i-1][l][j];
    LL ans=0;
    for(LL i=0;i<=up;i++)ans+=dp[n][m][i];
    printf("%lld",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值