要求
给定一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,计算岛屿的数量。一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设网格的四个边均被水包围。
示例
示例 1:
输入:
11110
11010
11000
00000
输出: 1
示例 2:
输入:
11000
11000
00100
00011
输出: 3
代码
-
递归遍历
void dfs(vector<vector<char>>& grid,int i,int j) //i表示纵坐标,j表示横坐标。
{
int K = grid.size(),L = grid[0].size();
grid[i][j] = '0';
if(i+1<K&&grid[i+1][j]!='0') dfs(grid,i+1,j);
if(i-1>=0&&grid[i-1][j]!='0') dfs(grid,i-1,j);
if(j-1>=0&&grid[i][j-1]!='0') dfs(grid,i,j-1);
if(j+1<L&&grid[i][j+1]!='0') dfs(grid,i,j+1);
return;
}
int numIslands(vector<vector<char>>& grid) {
int K = grid.size(); //K表示二维网络的高
if(K==0) return 0;
int L = grid[0].size(); //L表示二维网络的宽。
int ret = 0;
if(K==0||L==0) return 0;
for(int i = 0;i<K;i++)
for(int j = 0;j<L;j++)
{
if(grid[i][j]!='0')
{
dfs(grid,i,j);
ret++;
}
}
return ret;
}
-
队列辅助遍历
int numIslands(vector<vector<char>>& grid) {
int K = grid.size();
if(!K) return 0;
int L = grid[0].size();
int ret = 0;
for(int i = 0;i<K;i++)
for(int j = 0;j<L;j++)
{
if(grid[i][j]=='1')
{
ret++;
grid[i][j] = '0';
queue<pair<int,int>> que;
que.push({i,j});
while(!que.empty())
{
auto rc = que.front();
que.pop();
int row = rc.first,col = rc.second;
if(row-1>=0&&grid[row-1][col]=='1')
{
que.push({row-1,col});
grid[row-1][col] = '0';
}
if(row+1<K&&grid[row+1][col]=='1')
{
que.push({row+1,col});
grid[row+1][col] = '0';
}
if(col-1>=0&&grid[row][col-1]=='1')
{
que.push({row,col-1});
grid[row][col-1] = '0';
}
if(col+1<L&&grid[row][col+1]=='1')
{
que.push({row,col+1});
grid[row][col+1] = '0';
}
}
}
}
return ret;
}
总结
- 采用递归的方法遍历,递归的条件是紧挨的为1,并不超界,遍历的方向可以随意调整,即dfs代码中的if语句顺序。
- 采用队列储存周围符条件的位置,将遍历过的赋值为‘0’。
- 递归和队列只是在保存数据上方式有所不同,核心思想还是遍历方式和遍历过的赋值为‘0’。