lectcode-最短无序连续子数组

要求

给定一个整数数组,你需要寻找一个连续的子数组,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。

你找到的子数组应是最短的,请输出它的长度。

示例

输入: [2, 6, 4, 8, 10, 9, 15]
输出: 5
解释: 你只需要对 [6, 4, 8, 10, 9] 进行升序排序,那么整个表都会变为升序排序。

代码

先排序后比较

int findUnsortedSubarray(vector<int>& nums) {
    if(nums.size()==0) return 0;
    vector<int> temp(nums);
    sort(temp.begin(),temp.end());
    int i= 0,j = 0,res = 0;
    for(i = 0;i<nums.size();i++)
    if(temp[i]!=nums[i]) break;
    for(j = nums.size()-1;j>=0;j--)
    if(temp[j]!=nums[j]) break;
    res = j - i + 1;
    return res>=0?res:0;
}
  • 最短无序连续子数组存在于数组的内部,如果将该数组排序,那么除了无序数组改变外,数组的首尾并没有变化,所以通过比较数组的首尾就可以求出最短无序数组的长度。

找无序数组的最大,最小元素

int findUnsortedSubarray(vector<int>& nums) {
    int min_value = INT_MAX, max_value = INT_MIN;
    bool flag = false;
    for (int i = 1; i < nums.size(); i++) {
        if (nums[i] < nums[i - 1])
            flag = true;
        if (flag)
            min_value = min(min_value, nums[i]);
    }
    flag = false;
    for (int i = nums.size() - 2; i >= 0; i--) {
        if (nums[i] > nums[i + 1])
            flag = true;
        if (flag)
            max_value = max(max_value, nums[i]);
    }
    int left = 0,right = 0;
    for (left = 0; left < nums.size(); left++) {
        if (min_value < nums[left])
            break;
    }
    for (right = nums.size() - 1; right >= 0; right--) {
        if (max_value > nums[right])
            break;
    }
    return right - left < 0 ? 0 : right - left + 1;
}
  • 这个算法背后的思想是无序子数组中最小元素的正确位置可以决定左边界,最大元素的正确位置可以决定右边界。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值