面向对象我的简单理解,看完之后希望点赞并且评论你的理解哦

面向对象

其实面向对象就是创建一个“类”(模板),然后根据这个模板去写具体实例也就是“对象”,类中包含“属性”(变量),行为(就是方法)。
就是当你想去做一件事,但你自己又太麻烦,你就去创建一个对象,让他去帮你实现,然后你去调用他实现你想得到的东西。

封装
封装没啥,就是private 令属性私有化,让别人不能直接去访问这个属性,必须通过get这个属性去访问,set这个属性去赋值。

继承
继承说白了就是 创建一个父类,然后用子类去继承, 意思就是 你继承你爸爸的技能,可用可不用,用的话不够你需要的,你就增加技能的范围;如果父类是抽象类的话 他的所有东西你必须得继承,并且方法要改写,因为你爸爸希望你比他更牛逼;

多态
多态的主要核心内容就是父类去调用子类。俗称父类变量子类对象。意思就是 动物类有无数的子类,比如狗就是动物,就是子类,猫也一样。
注意:用父类调子类的时候,子类独有的方法是不能调用的,只能调用子类改写父类以后的方法和父类原有的。

抽象类
抽象类就是在 类和方法前加了一个 abstract (抽象) , 然后就是变量可封装或者封装,方法的话可加abstract 可不加,加了的话必须重新方法,不然编译错误了。

接口
1.公开静态常量(意思就是给你固定的值,爱用不用) 写不写public static final 都行 因为他会自动给你加上的
2.公开抽象方法 写不写abstract 都是抽象方法
接口叫特殊的抽象类,但是接口能被多个继承 。这是不同于抽象类的。 类是class 接口是interface

总结
构造方法的时候,不同类的不能访问带参构造。
当new一个对象的时候,自动去调用构造方法,并且去执行成员里面的成员变量和new的别人。如果有静态代码块和动态代码块的话 废话不多说,直接上图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

    当你的成员里面new另一个对象的时候,优先自己的静态代码块,然后调用另一个对象的静态静态代码块,在调用另个对象的动态代码块 ,在去调用另一个对象的构造方法,在去执行自己的动态代码块,在来就是构造方法。


     如果是父类的话,有限调用父类的静态,在调自己的静态,再去调父类的动态代码块,构造方法,再调自己的 
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值