数组中的第K大元素问题
问题: 在未排序的数组中找到第 k 个最大的元素。请注意,需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
约定: 假设这里数组的长度为 n。
方法一:基于快速排序的选择方法
思路和方法
可以用快速排序来解决这个问题,先对原数组排序,再返回倒数第K个位置,这样的平均时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),但其实我们可以做的更快。
首先回顾快速排序,这是一个典型的分支算法。对数组 a [ l . . . r ] a[l...r] a[l...r]做快速排序的过程:
- 分解: 将数组 a [ l . . . r ] a[l...r] a[l...r] 「划分」 成两个子数组 a [ l . . . q − 1 ] 、 a [ q + 1... r ] a[l...q-1]、a[q+1...r] a[l...q−1]、a[q+1...r],使得 a [ l . . . q − 1 ] a[l...q-1] a[l...q−1]中的每个元素都小于a[q],且a[q]小于等于 a [ q + 1... r ] a[q+1...r] a[q+1...r]中的每个元素。其中,计算下标q也是「划分」过程的一部分。
- 解决: 通过递归调用快速排序,对子数组 a [ l . . . q − 1 ] a[l...q-1] a[l...q−1]和 a [