证明N= ∑d|Nφ(d) 证: 设N= ΠTi=1p[i]k[i] p[i]表示互异的素数。 ∑d|Nφ(d) = ΠTi=1∑k[i]j=0φ(p[i]j) = ΠTi=11+∑k[i]j=1φ(p[i]j) = ΠTi=11+∑k[i]j=1p[i]j−1∗(p[i]−1) = ΠTi=11+(p[i]−1)∗∑k[i]j=1p[i]j−1 = ΠTi=11+(p[i]−1)∗p[i]k[i]−1p[i]−1 = ΠTi=1p[i]k[i] =N 得证