欧拉函数的经典公式

证明N= d|Nφ(d)

证:

设N= ΠTi=1p[i]k[i] p[i]表示互异的素数。

d|Nφ(d) = ΠTi=1k[i]j=0φ(p[i]j)

= ΠTi=11+k[i]j=1φ(p[i]j)

= ΠTi=11+k[i]j=1p[i]j1(p[i]1)

= ΠTi=11+(p[i]1)k[i]j=1p[i]j1

= ΠTi=11+(p[i]1)p[i]k[i]1p[i]1

= ΠTi=1p[i]k[i] =N

得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值