Python 剑指offer 07

在这里插入图片描述
解题思路:
前序遍历性质: 节点按照 [ 根节点 | 左子树 | 右子树 ] 排序。
中序遍历性质: 节点按照 [ 左子树 | 根节点 | 右子树 ] 排序。
在这里插入图片描述

以题目示例为例:

前序遍历划分 [ 3 | 9 | 20 15 7 ]
中序遍历划分 [ 9 | 3 | 15 20 7 ]
根据以上性质,可得出以下推论:

前序遍历的首元素 为 树的根节点 node 的值。
在中序遍历中搜索根节点 node 的索引 ,可将 中序遍历 划分为 [ 左子树 | 根节点 | 右子树 ] 。
根据中序遍历中的左 / 右子树的节点数量,可将 前序遍历 划分为 [ 根节点 | 左子树 | 右子树 ] 。

通过以上三步,可确定 三个节点 :1.树的根节点、2.左子树根节点、3.右子树根节点。
对于树的左、右子树,仍可使用以上步骤划分子树的左右子树。

以上子树的递推性质是 分治算法 的体现,考虑通过递归对所有子树进行划分。

分治算法解析:
递推参数: 根节点在前序遍历的索引 root 、子树在中序遍历的左边界 left 、子树在中序遍历的右边界 right ;

终止条件: 当 left > right ,代表已经越过叶节点,此时返回 nullnull ;

递推工作:

建立根节点 node : 节点值为 preorder[root] ;
划分左右子树: 查找根节点在中序遍历 inorder 中的索引 i ;
为了提升效率,本文使用哈希表 dic 存储中序遍历的值与索引的映射,查找操作的时间复杂度为 O(1)O(1)

构建左右子树: 开启左右子树递归;
在这里插入图片描述

i - left + root + 1含义为 根节点索引 + 左子树长度 + 1

返回值: 回溯返回 node ,作为上一层递归中根节点的左 / 右子节点;

class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
        def recur(root, left, right):
            if left > right: return                               # 递归终止
            node = TreeNode(preorder[root])                       # 建立根节点
            i = dic[preorder[root]]                               # 划分根节点、左子树、右子树
            node.left = recur(root + 1, left, i - 1)              # 开启左子树递归
            node.right = recur(i - left + root + 1, i + 1, right) # 开启右子树递归
            return node                                           # 回溯返回根节点

        dic, preorder = {}, preorder
        for i in range(len(inorder)):
            dic[inorder[i]] = i
        return recur(0, 0, len(inorder) - 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值