/**
* @author Drug
* @create 2020-05-12 15:46
*/
public class KnapsackProblem {
public static void main(String[] args) {
//物品重量
int[] w = {1, 4, 3};
//物品价格
int[] value = {1500, 3000, 2000};
//背包容量
int m = 4;
//物品个数
int n = value.length;
//记录最大存放价值的二维数组
int[][] v = new int[n + 1][m + 1];
//记录存在情况的二维数组
int[][] path = new int[n + 1][m + 1];
//将第一行一列都置为0
for (int i = 0; i < v.length; i++) {
v[i][0] = 0;
}
for (int i = 0; i < v[0].length; i++) {
v[0][i] = 0;
}
//从第一个商品到第三个商品为止
for (int i = 1; i < v.length; i++) {
//从背包容量1到4
for (int j = 1; j < v[0].length; j++) {
//如果本轮添加的商品重量大于背包容量
if (w[i - 1] > j) {
//沿用上一轮的最大价格
v[i][j] = v[i - 1][j];
} else {
//如果本轮添加的商品重量小于等于背包容量
//在上一轮同容量的最大价格 和 添加新物品后剩余容量存其他物品的最大价格 求最大值
//value[i - 1] + v[i-1][j-w[i-1]] 是 添加新物品后剩余容量存其他物品的最大价格
//v[i-1][j] 是上一轮同容量的最大价格
//如果 添加新商品后总价值变高
if ((value[i - 1] + v[i - 1][j - w[i - 1]]) >= v[i - 1][j]) {
//将价格改变
v[i][j] = (value[i - 1] + v[i - 1][j - w[i - 1]]);
//说明第[i][j]格里存放了新商品
path[i][j] = 1;
} else {
//如果 添加新商品后总价值没有变高
v[i][j] = v[i - 1][j];
}
}
}
}
//输出价格最大数组
for (int i = 0; i < v.length; i++) {
for (int j = 0; j < v[0].length; j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}
System.out.println("总价值最大时的存放情况");
//逆向遍历,找path中最后一个为1的格子
//path行下标
int i = path.length - 1;
//path列下标
int j = path[0].length - 1;
//当行列为负数时退出循环
while(i > 0 && j>0){
//说明这个格子是添加的新商品
if(path[i][j] == 1){
System.out.println("存放了"+i+"号乐器");
//剩余容量
j -= w[i-1];
}
//行号减1
i--;
}
}
}
java动态规划(背包问题)代码实现
最新推荐文章于 2024-03-30 11:05:24 发布