2021-4-13
今天和任课老师进行了短暂的交谈,对我的一些疑惑进行了解答
为什么研究AVS?
一方面我们要形成自己的视频编码专利,另一方面,视频编码很多技术还可以继续提升,继续研究更好的方法。不同的编码框架都有不同的优势以及应用场景。
应该研究什么?
变换和量化实际上只是之后的一个小处理,编码的大部分时间都在预测部分。编码宏块的确定,运动搜索,运动估计。可以在这些上进行进一步的研究。并且,编码应该有其不同的应用场景的考虑,针对不同场景也应该进行不同的研究,可能整体框架类似,但是具体应用技术会有很大改变。
3D视频,多个摄像机组成的传感器阵列,他们采集到的视频你应该怎么去处理,又应该怎么去压缩呢。
监控视频, 视频中的亮度很弱,噪声很明显,这个时候又应该怎么编码呢?
这个方向还有研究价值吗?
博客论坛上的话可以忽略,如果确定一个喜欢的方向,深入去做就好。
很早以前,看到VCD我们以为这就是很棒的。再之后到硬盘又到现在,不论每个研究方向每个阶段,都会有类似的评论和观点。但是随着时代的发展,他一定还会有他的更进一步的需求。
怎么学习?
视频编码这块不能单纯的研究压缩,目前的话,要广泛学习和了解其他学科的东西。包括:信号处理、图像处理、统计学、优化算法、机器学习、深度学习等等。
例如:在宏块划分方面,我们可以挨个编码依据RDO选择最小的,但是我们也可以借助图像处理相关的知识,利用复杂度或者其他特征对其进行划分。同样的,运动搜索运动估计我们也可以借助机器学习的方法快速完成。R-lamda等模型都是统计上完成的。
实际山,视频编码就是建立一个模型,然后确定一组参数。我们需要借助多个学科的很多种思想,他不是独立存在的。
很多时候不理解为什么这么变化?
视频编码中很多技术,是在反复实践中总结出来的。他不会告诉你为什么264这么做为什么到

本文作者分享了对AVS视频编码的研究原因,包括专利积累和技术优化。强调编码的重点在于预测部分,如编码宏块的确定、运动搜索和运动估计,并讨论了不同应用场景下的编码策略。作者建议广泛学习相关学科,如信号处理、图像处理和机器学习,以加深对视频编码的理解。此外,量化算法的变化会影响宏块的编码类型,量化过程对帧内和帧间编码宏块数量的影响在于其决定了参考宏块的质量。
最低0.47元/天 解锁文章
511

被折叠的 条评论
为什么被折叠?



