自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

谷哥的小弟

坚持原创,热衷分享;积累知识,沉淀技术

  • 博客(1573)
  • 资源 (21)
  • 收藏
  • 关注

原创 十载寒冰,难凉热血——2020CSDN年度博客之星Top10心路历程

十多年前,我刚开始学软件编程的时候,遇到问题就到处找答案,看别人的文章;再从文章中拷贝代码粘贴在自己的项目里看看是不是能解决问题。解决了最好,要是没有解决的话就继续再找。这种状态持续了很久:不停地四处找代码借以解决自己的项目需求和技术难点。在这个过程中自己的进步微乎其微,而且遇到以往类似的问题依然不清楚该怎么解决,于是只有再次去找代码,复制,粘贴……如此循环。在这样的循环下,开始有些麻木了,甚至心安理得地觉得:写代码原本就是这样的,大家也都是这样做的。直到有一天,我觉得这是在为自己开脱,其实是在心底隐蔽..

2021-02-04 22:49:46 17895 46

原创 大模型知识蒸馏技术(3)——教师模型与学生模型

知识蒸馏技术是一种模型压缩方法,其核心在于将教师模型的知识迁移到学生模型中。教师模型通常是大型、复杂的高性能模型,能够学习到丰富的特征表示和复杂的模式,但计算成本高,难以在资源受限的环境中部署。学生模型则是一个小型、轻量级的模型,设计目标是在有限的计算资源和存储空间下实现高效的推理。知识蒸馏的目标是通过教师模型的指导,让学生模型学习到教师模型的输出(如软目标)和特征表示,从而在减少参数量的同时,尽可能继承教师模型的性能。

2025-02-08 20:18:16 1324

原创 大模型知识蒸馏技术(2)——蒸馏技术发展简史

2006年,Hinton的研究团队开始探索如何将复杂的集成模型压缩成更小、更高效的模型。他们发现,通过训练一个简单的神经网络来模拟复杂模型的行为,可以在不显著损失性能的情况下大幅减少模型的存储和计算需求。这一研究为后续知识蒸馏技术的发展提供了重要的理论基础。

2025-01-30 22:22:49 1867

原创 大模型知识蒸馏技术(1)——蒸馏技术概述

知识蒸馏的概念最早可以追溯到2006年,当时 Geoffrey Hinton 等人的研究已经蕴含了知识迁移和模型压缩的初步思想。然而,知识蒸馏这一概念正式被提出是在2015年,Geoffrey Hinton、Oriol Vinyals和Jeff Dean在论文《Distilling the Knowledge in a Neural Network》中首次明确提出了知识蒸馏的概念。他们提出可以通过让一个小模型(学生模型)学习大模型(教师模型)的输出分布,来获得与大模型相近的性能。在这一过程中,引入了“软标签

2025-01-30 12:27:47 2034

原创 HBuilderX构建Vue项目

HBuilderX是一款专为开发者设计的高效开发工具,致力于提升开发者的编码效率和体验。HBuilderX既适合追求极致效率的极客,也适合希望简化工作流程的懒人开发者。HBuilderX支持Windows等操作系统,让开发者在不同平台上都能享受到一致的开发体验。近年来,HBuilderX以其高效、友好的特点吸引了众多开发者的关注。

2025-01-26 19:51:43 2055

原创 解决npm报错:sill idealTree buildDeps

使用 npm 安装依赖时报错:sill idealTree buildDeps

2025-01-04 23:03:39 1679

原创 解决HBuilderX报错:未安装内置终端插件,是否下载?或使用外部命令行打开。

在HBuilderX中执行npm run build总是提醒下载插件;图示如下:

2025-01-04 22:36:27 1160

原创 通义千问API KEY操作指南

阿里云百炼官方地址https://bailian.console.aliyun.com/,请点击开通服务;图示如下:

2025-01-04 21:34:24 1228

原创 通过环境变量配置openai的api-key

在环境变量中配置api-key。其中,变量名为OPENAI-API-KEY,变量值为openai的api-key。图示如下:

2025-01-04 13:09:00 1266

原创 大模型的构建与部署(3)——数据标注

数据标注通过为原始数据添加标签或注释,显著增强了数据的可解释性。在机器学习和深度学习领域,模型的训练依赖于大量带标签的数据。这些标签不仅帮助模型识别数据中的模式和特征,而且对于模型的解释性至关重要。例如,在图像识别任务中,标注可以指出图像中的对象及其属性,使得模型能够理解图像内容并做出预测。

2024-12-16 23:00:00 1260

原创 大模型的构建与部署(2)——数据清洗

在本研究报告中,我们深入探讨了原始数据中常见的问题,包括缺失值、重复值、异常值、数据格式不一致以及数据质量不均等问题,并分析了这些问题对模型训练性能和准确性的影响。

2024-12-16 22:30:00 1517

原创 大模型的构建与部署(1)——数据采集

公开数据集作为数据采集的重要来源,其便利性在于能够为研究和项目提供即时可用的数据资源。根据最新的研究统计,超过70%的人工智能研究项目依赖于公开数据集进行算法训练和模型测试。这些数据集通常由学术机构、政府或大型企业发布,覆盖图像识别、自然语言处理、语音识别等多个领域。然而,公开数据集也存在一些挑战。一项针对公开数据集质量的调查显示,约40%的数据集存在标注错误或数据不一致的问题,这些问题可能导致模型训练结果的偏差。

2024-12-16 21:30:00 2247

原创 Transformer编码器-解码器架构

Transformer模型的编码器-解码器架构是其核心特征之一,它通过精心设计的层叠结构实现了高效的序列到序列转换。该架构由编码器和解码器两大部分组成,每部分由N个相同的层组成,每层包含多个子层和特定的连接机制。编码器部分负责处理输入序列,将其转换为一系列连续的向量表示,这些向量富含输入数据的上下文信息。相对应地,解码器部分则利用编码器的输出和已经生成的输出序列,逐步构建目标序列。这种架构的优势在于其并行化处理能力,与传统的循环神经网络(RNN)相比,Transformer能够同时处理整个序列,显著提高了计

2024-12-09 08:45:00 855

原创 Transformer应用场景

Transformer模型,首次提出于论文《Attention Is All You Need》,是一种基于注意力机制的神经网络架构。其核心特性在于能够处理序列数据,并高效捕捉序列中的长距离依赖关系。与传统的循环神经网络(RNN)和卷积神经网络(CNN)相比,Transformer模型能够并行处理序列中的所有元素,显著提高了计算效率。并行处理能力:由于不依赖于序列的时间步迭代,Transformer能够同时处理序列中的所有元素,这在处理长序列时尤为有效。自注意力机制。

2024-12-09 08:30:00 1378

原创 Transformer发展历程

Transformer模型是一种先进的神经网络架构,它在处理序列数据时不依赖于传统的循环神经网络(RNN)结构,而是采用基于注意力机制的全新编码器-解码器(Encoder-Decoder)架构。这种架构的核心在于其能够并行处理序列中的所有元素,从而显著提高了计算效率。自注意力机制(Self-Attention):Transformer模型的核心是自注意力机制,它允许模型在处理序列中的每个元素时,同时考虑序列中的其他所有元素。这种机制使得模型能够捕捉序列内部的长距离依赖关系,这对于理解语言的复杂结构至关重要。

2024-12-09 08:00:00 1458

原创 大模型分类3—按功能特性

生成式大模型的核心能力在于其创造性,能够独立生成新的数据样本,如文本、图像和音频等。这类模型在内容创作和设计辅助领域展现出巨大的潜力和应用价值。应用领域广泛:生成式大模型不仅在文本生成领域有所应用,如自动写作、诗歌创作等,还在图像生成领域,如虚拟角色设计、艺术创作等方面有着广泛的应用。此外,音频生成也是其应用领域之一,例如音乐创作和声音模拟。技术实现:生成式大模型通常基于深度学习技术,如生成对抗网络(GANs)、变分自编码器(VAEs)等,这些技术使得模型能够学习数据的联合概率分布,并生成新的数据样本。

2024-12-05 23:45:00 1416

原创 大模型分类2—按训练方式

监督学习大模型是一种机器学习范式,它依赖于标记数据集进行训练。这些数据集包含了输入特征和对应的输出标签,模型通过学习这些特征和标签之间的关系来预测新数据的标签。在训练过程中,模型会不断调整参数以最小化预测值和真实值之间的差异,这一过程通常涉及到损失函数的优化。无监督学习大模型是一种机器学习范式,它在没有标签的数据集上进行训练。这类模型的目标是探索数据的内在结构和模式,而不是通过预测标签来学习。

2024-12-05 21:30:00 1014

原创 大模型分类1—按应用类型

大模型技术的发展已经覆盖了自然语言处理、计算机视觉和多模态交互等多个领域,每个领域都有其独特的应用场景和技术挑战。自然语言处理大模型在文本分类、情感分析、机器翻译等领域取得了显著进展,而计算机视觉大模型在图像识别、目标检测等方面展现了强大的性能。多模态大模型则通过整合不同模态的数据,为自动驾驶、智能客服等应用提供了新的可能性。

2024-12-05 20:30:00 1508

原创 机器学习之强化学习

强化学习是一种典型的机器学习范式,其核心在于智能体(Agent)通过与环境(Environment)的交互来学习最佳的行为策略。在这个过程中,智能体尝试不同的动作(Action),并根据环境给予的反馈信号——即奖励(Reward)或惩罚(Punishment)——来调整其行为。这种学习机制模拟了生物体在自然界中的条件反射学习过程,其中奖励信号起到了强化特定行为的作用。

2024-11-11 08:45:00 1096

原创 机器学习之无监督学习

无监督学习是一种机器学习范式,它允许算法在没有预先标记的训练数据的情况下进行学习。这种方法特别适用于那些没有标签的数据集,或者标签获取成本过高的情况。无监督学习的核心在于挖掘数据的内在结构和模式,从而揭示数据的分布、关联和聚类信息。无监督学习可以被定义为一种学习过程,其中模型试图在没有反馈信号的情况下发现输入数据的底层结构。这种学习方式不依赖于监督信号,如标签或奖励,而是依赖于数据本身的统计特性。

2024-11-11 08:15:00 884

原创 机器学习之监督学习

监督学习是一种机器学习方法,它利用一组已知类别的样本来训练模型,使其能够对新的、未见过的数据进行分类或预测。在这种学习模式下,每个训练样本都包含输入特征和一个对应的标签,模型的目标是学习输入特征与标签之间的映射关系。根据任务的不同,监督学习可以分为两大类:分类和回归。分类任务旨在将数据分配到两个或多个类别中,而回归任务则致力于预测连续的输出值。例如,线性回归用于预测房价,逻辑回归用于判断邮件是否为垃圾邮件。监督学习算法通过优化一个目标函数来调整模型参数,该函数衡量模型预测与实际标签之间的差异。

2024-11-11 08:00:00 1396

原创 Transformer应用场景

Transformer模型的起源可以追溯到2017年的论文《Attention is All You Need》,该论文由Ashish Vaswani等人撰写,首次提出了完全基于注意力机制的Transformer架构。这一模型摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)结构,转而采用自注意力机制来捕捉序列数据中的长距离依赖关系。

2024-10-28 13:59:33 1274

原创 神经网络应用场景

神经网络作为一种强大的深度学习技术,正在各个领域发挥着越来越重要的作用。在计算机视觉领域,神经网络的应用尤为广泛和深入。通过训练大量图像数据,神经网络能够学习到图像的特征和模式,从而实现高精度的图像识别、目标检测、图像分割以及图像生成等任务。这些技术被广泛应用于安防监控、自动驾驶、医疗影像分析等多个领域,极大地提升了相关行业的效率和准确性。在语音识别与自然语言处理方面,神经网络也取得了显著进展,能够实现语音转文本、机器翻译等复杂任务,为智能客服、语音助手等应用提供了强大的技术支持,使得人机交互变得更加自然。

2024-10-28 13:59:12 1000

原创 Visual Studio安装图文详解教程

Visual Studio 社区版功能完备且可扩展的免费 IDE,可用于创建新式 Android、iOS、Windows 应用程序以及 Web 应用程序和云服务。

2024-10-23 17:58:44 1052 1

原创 深度学习应用场景

深度学习应用领域广泛,这主要得益于其强大的特征学习能力。在计算机视觉领域,它广泛应用于图像识别、目标检测和图像分割等任务,极大地推动了安防监控、医学影像分析和自动驾驶等行业的发展。在语音识别与自然语言处理方面,深度学习不仅支持语音转文本、语音搜索等交互功能,还在机器翻译、文本分类、情感分析和对话生成等任务中展现出卓越性能。此外,深度学习还被广泛应用于推荐系统中,通过精准分析用户行为数据,提供个性化推荐服务,从而极大地提升了用户体验和平台收益。

2024-10-21 13:37:27 1027

原创 机器学习应用场景

机器学习技术的发展和应用已经成为推动各行各业变革的关键力量。从医疗到金融,从教育到交通,机器学习技术的应用不仅提高了效率和准确性,还为解决复杂问题提供了新的途径。在医疗领域,机器学习技术通过分析医学影像和基因组数据,辅助医生进行疾病诊断和药物研发,提高了治疗效果和个性化医疗的可能性。在金融领域,机器学习模型通过深入分析信用历史和交易行为,提高了信用评分的准确性和欺诈检测的效率,降低了金融机构的风险。在教育领域,机器学习技术通过分析学生的学习数据,提供了个性化教学和学生表现预测,提升了教育的质量和效果。

2024-10-21 13:37:01 773

原创 解决“org.apache.catalina.startup.Catalina.stopServer 未配置关闭端口。通过OS信号关闭服务器。服务器未关闭“

项目部署至Tomcat服务器报错:org.apache.catalina.startup.Catalina.stopServer 未配置关闭端口。通过OS信号关闭服务 器。服务器未关闭;图示如下:

2024-10-17 11:28:35 549

原创 Scala大数据开发

Scala combines object-oriented and functional programming in one concise, high-level language. Scala's static types help avoid bugs in complex applications, and its JVM and JavaScript runtimes let you build high-performance systems with easy access to huge

2024-10-15 13:41:13 932

原创 Bean的实例化与Bean的装配

Bean的装配是Spring框架中的核心概念之一,它指的是将Bean实例与其依赖关系进行组合和配置的过程,以确保Bean能够按照预期的方式工作。这个过程涵盖了Bean的整个生命周期管理,从实例化、依赖注入到初始化,再到最终的销毁。

2024-10-15 13:34:02 539

原创 大模型面临的挑战

大模型技术在快速发展的过程中,展现了强大的潜力和广泛的应用前景,但同时也面临着多方面的挑战。这些挑战不仅涉及技术层面,还关联到应用实践和伦理道德。在技术层面,模型的可解释性、计算资源的消耗以及数据隐私与安全是大模型面临的三大主要挑战。模型可解释性问题涉及到模型决策过程的透明度和理解度,这对于建立用户信任和确保模型公平性至关重要。计算资源的消耗问题则涉及到大模型训练和部署过程中的能源消耗和硬件成本,这对环境和企业经济都产生了影响。数据隐私与安全挑战则关注如何在保护个人隐私的同时有效利用数据进行模型训练。

2024-10-14 11:26:04 1144

原创 多模态大模型

多模态大模型(Large Multimodal Models,简称LMMs)是指能够处理和理解多种不同类型的数据输入的人工智能模型,例如文本、图像、音频和视频。这些模型通过大规模的数据训练,学习如何联合理解和生成跨多种模式的信息。多模态大模型的研究背景在于人类感知世界的自然方式是多模态的。我们的视觉、听觉、触觉等感官系统不断地接收和处理来自环境的多种信息。为了模拟这种人类感知能力,多模态大模型应运而生,旨在通过融合不同模态的数据来提升机器的智能水平。

2024-10-14 11:25:48 862

原创 Base64字符串转图片在线工具

Base64编码,作为一种将二进制数据转换为文本格式的方法,其核心在于利用64个可打印字符来表征任意的二进制信息。这一编码方式的出现,极大地便利了二进制数据在文本协议(例如HTTP)中的传输。接下来,我们将从Base64的基本原理、图片与Base64字符串的相互转化过程、具体的应用场景以及相关的注意事项等几个方面,进行细致的探讨。首先,Base64编码的基本原理是将二进制数据以每3个字节为一组进行划分,并将这24位的数据进一步细分为4个6位的二进制小组。随后,每个6位的二进制小组会被映射到Base64编

2024-10-09 21:27:45 838

原创 解决ERR_PROXY_CONNECTION_FAILED

电脑无法正常上网,报错信息如下:ERR_PROXY_CONNECTION_FAILED。请按如下步骤和方式解决该问题。首先,请使用Win+R打开命令框,输入命令inetcpl.cpl打开internet选项;图示如下:

2024-10-07 20:22:36 1569 1

原创 解决java: 无法访问java.lang.Record

项目在编译期间报错:java: 无法访问java.lang.Record, 找不到java.lang.Record的类文件;图示如下:

2024-10-07 20:22:24 316

原创 公开且免费的天气查询API

WeatherAPI.com 提供了一个广泛使用的天气预报和地理位置 API,它支持 JSON 和 XML 格式的数据,适用于商业和非商业用途。这个 API 被全球超过 475,000 名用户信任,可以集成到各种应用中。WeatherAPI主要特征如下:

2024-10-07 20:22:08 2111

原创 Spring依赖注入推荐使用构造函数注入而非@Autowired

在Spring框架中,依赖注入(Dependency Injection, DI)是实现组件之间松耦合的关键技术。Spring支持多种依赖注入方式,其中构造函数注入和基于@Autowired注解的注入是两种常见的方法。然而,Spring官方以及许多经验丰富的开发者更倾向于推荐使用构造函数注入。接下来,我们将详细解释为什么构造函数注入是更好的选择,以及它与@Autowired注解注入之间的主要区别。

2024-09-30 00:45:00 1276

原创 ServletContainerInitializer接口详解

ServletContainerInitializer是Servlet 3.0规范中引入的一个接口,它的主要目的是允许开发者在Servlet容器(如Tomcat、Jetty等)启动时执行一些自定义的初始化代码。在过去,Servlet、Filter和Listener等Web组件通常需要在web.xml文件中进行静态配置,但有了ServletContainerInitializer接口,开发者就可以通过实现这个接口来动态地注册这些组件,而无需修改web.xml文件。/**/**

2024-09-30 00:30:00 721

原创 Servlet 3.0新特征

Servlet 3.0规范是在2009年随着Java EE 6的发布而推出的。它引入了一系列新特性和改进,旨在简化Web应用的开发和部署过程,并提高Web应用的性能和可扩展性。Servlet 3.0的发布标志着Java Web开发进入了一个新阶段,为开发者提供了更多灵活性和强大的功能支持。

2024-09-30 00:15:00 1054

原创 对话Chat和续写Completion的区别

对话Chat功能主要适用于模拟人类对话的场景,例如智能客服、智能问答和聊天机器人等。它允许用户与模型进行多轮次交互,从而模拟真实的对话过程。用户输入的文本作为对话内容,同时可能需要指定对话角色以便模型更准确地理解上下文。基于这些输入,对话Chat会生成回复文本,模拟人类的自然语言交流,提供有用信息或执行特定指令。这一功能强调交互性和实时性,能够处理复杂的对话流程和多轮次交互。

2024-09-23 01:45:00 428

原创 《Learning Interactive Real-World Simulators》论文导读

《Learning Interactive Real-World Simulators》这篇论文的主要贡献在于提出了一种全新的方法来构建交互式现实世界模拟器。通过整合多种数据来源并训练生成模型,研究者成功实现了UniSim模拟器,为人工智能领域提供了一个重要的工具。该模拟器不仅有助于推动深度学习、强化学习等技术的发展,还为自动驾驶、智能家居等实际应用场景提供了有力支持。此外,该论文的研究方法和成果也对其他领域产生了积极影响。例如,它启发了更多研究者探索基于生成模型的模拟器构建方法;同时,UniSim的成功实

2024-09-23 00:45:00 861

DependencyInjection

Martin Fowler的经典论文《Inversion of Control Containers and the Dependency Injection pattern》的中文翻译。In the Java community there's been a rush of lightweight containers that help to assemble components from different projects into a cohesive application. Underlying these containers is a common pattern to how they perform the wiring, a concept they refer under the very generic name of "Inversion of Control". In this article I dig into how this pattern works, under the more specific name of "Dependency I

2023-09-05

curl-7.76.1-win64-mingw.zip

curl-7.76.1-win64-mingw.zip

2021-10-03

软件开发英语词汇测试.doc

软件开发英语词汇测试.doc

2021-04-07

轻松解决PowerDesigner 15 License Key失效的问题

轻松解决PowerDesigner 15 License 失效的问题。

2020-11-12

javascript网页开发-张孝祥

javascript网页开发pdf,作者:张孝祥。大家一起学习javascript。

2017-10-02

看透springMvc源代码分析与实践 高清 pdf 带书签

看透springMvc源代码分析与实践 高清 pdf 带书签

2017-08-05

Java_Web开发内幕-高级特性 pdf 带书签

张孝祥老师 Java_Web开发内幕-高级特性 pdf 带书签

2017-07-25

Java虚拟机精讲 高清 带书签

Java虚拟机精讲 高清 带书签!!!

2017-07-15

深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)

深入理解Java虚拟机:JVM高级特性与最佳实践(第2版)高清!! 无码!! 带书签!

2017-07-15

Android系统源代码情景分析

《Android系统源代码情景分析》随书光盘

2017-04-03

Java编程思想第四版完整高清版

Java编程思想第四版完整高清版pdf

2017-03-26

layout部分源码

源代码。

2016-05-26

仿QQ获取设备中APK并分享

2016-04-30

深入Java虚拟机(第二版)

以前在csdn下了一个,但是用不了。现在找到一个好的,传上来。

2010-04-30

网络协议仿真教学系统(通用版)CHM版本

网络协议仿真教学系统(通用版),好像是吉林大学的。方便实用,内容很全,重要的协议都包括了。

2010-04-08

《计算机网络(第四版)》课后答案

《计算机网络(第四版)》的课后答案 电子工业出版社

2010-04-08

java编程思想第四版中文版

java编程思想第四版中文版,翻译不错。大家学习,~~

2010-04-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除