转自:http://blog.csdn.net/zhutulang/article/details/7515772
计算一个整数的幂 X^N 的常见算法是使用 N-1 次乘法自乘。然而我们可以找到更好的算法。可以应用这样一种递归算法:如果 N 是偶数,有X^N=X^(N/2) * X^(N/2), 如果 N 是奇数,则有 X^N =X^[(N-1)/2] * X^[(N-1)/2] * X 。
为了说明这个算法为什么更高效,我们举一个例子。例如计算 X62 ,用第一种的常见算法我们要做61次自乘。而用第二种算法只要做9次乘法。
public long pow(long x, int n) {
if (n == 0)
return 1;
else {
// 判断n的奇偶
if (n % 2 == 0)
return pow(x * x, n / 2);
else
return pow(x * x, (n - 1) / 2) * x;
}
}
由于取幂运算得到的数可能会很大。我们可以使用 java 的 BigInteger 类,这个类可以用来处理任意大的整数。修改以上代码:
public BigInteger pow2(BigInteger x, int n) {
if (n == 0)
return BigInteger.valueOf(1);
else {
if (n % 2 == 0)
return pow2(x.multiply(x), n / 2);
else
return pow2(x.multiply(x), (n - 1) / 2).multiply(x);
}
}