1 前言
g-Dominance作为Pareto支配关系的一个变体被提出,在g-Dominance中,DM(Decision Maker)的偏好被给予关照,并以参考点(Reference Point)的形式出现。
理想的情况下,g-Dominance可以作为一个插件或者框架应用到任何基于Pareto支配关系构筑的进化偏好算法中,十分便捷。
2 论文要点
2.1 g-Dominance介绍
给定一个参考点
v
∈
R
p
\mathbf{v}\in \mathbb{R}^p
v∈Rp 以及
w
∈
R
∈
p
\mathbf{w}\in\mathbb{R}\in p
w∈R∈p ,定义
F
l
a
g
v
(
w
)
\mathrm{Flag}_\mathbf{v}(\mathbf{w})
Flagv(w) 如下
F
l
a
g
v
(
w
)
=
{
1
i
f
w
i
≤
v
i
∀
i
=
1
,
⋯
,
p
1
i
f
v
i
≤
w
i
∀
i
=
1
,
⋯
,
p
0
o
t
h
e
r
w
i
s
e
.
\mathrm{Flag}_\mathbf{v}(\mathbf{w})=\left\{\begin{aligned} 1 & \quad\mathrm{if}\quad w_i\le v_i\quad\forall i=1,\cdots,p\\ 1 & \quad\mathrm{if}\quad v_i\le w_i\quad\forall i=1,\cdots,p\\ 0 & \quad\mathrm{otherwise.} \end{aligned}\right.
Flagv(w)=⎩
⎨
⎧110ifwi≤vi∀i=1,⋯,pifvi≤wi∀i=1,⋯,potherwise.
以二维目标函数为例,如果给定一个参考点
g
1
\mathbf{g_1}
g1 ,
F
l
a
g
g
1
(
w
)
\mathrm{Flag}_\mathbf{g_1}(\mathbf{w})
Flagg1(w) 将空间分为四个部分。参考点左下和右上区域的点
F
l
a
g
g
1
(
w
)
=
1
\mathrm{Flag}_\mathbf{g_1}(\mathbf{w})=1
Flagg1(w)=1 ,其余的点
F
l
a
g
g
1
(
w
)
=
0
\mathrm{Flag}_\mathbf{g_1}(\mathbf{w})=0
Flagg1(w)=0 。
基于 F l a g v ( w ) \mathrm{Flag}_\mathbf{v}(\mathbf{w}) Flagv(w) ,可以定义g-Dominance如下:
给定两点 w , w ′ ∈ R p \mathbf{w},\mathbf{w'}\in\mathbb{R}^p w,w′∈Rp , w \mathbf{w} w g-Dominance w ′ \mathbf{w'} w′ ,若满足以下条件之一:
- F l a g g ( w ) > F l a g g ( w ′ ) \mathrm{Flag}_\mathbf{g}(\mathbf{w})>\mathrm{Flag}_\mathbf{g}(\mathbf{w'}) Flagg(w)>Flagg(w′) ;
- F l a g g ( w ) = F l a g g ( w ′ ) \mathrm{Flag}_\mathbf{g}(\mathbf{w})=\mathrm{Flag}_\mathbf{g}(\mathbf{w'}) Flagg(w)=Flagg(w′) ,且 w i ≤ w i ′ ∀ i = 1 , ⋯ , p w_i\le w'_i\;\forall i=1,\cdots,p wi≤wi′∀i=1,⋯,p ,同时至少存在一个 j j j 使得 w j < w j ′ w_j<w'_j wj<wj′
2.2 算法简介
2.2.1 g-Dominance框架部分
若种群中有解 F l a g g ( f ) = 0 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=0 Flagg(f)=0 ,这些解的各维函数值将被加上一个足够大的数 M M M 保证这些解被原本 F l a g g ( f ) = 1 \mathrm{Flag}_\mathbf{g}(f)=1 Flagg(f)=1 的解Pareto支配。算法具体步骤如下:
- 计算 f i ( x ) , i = 1 , ⋯ , p f_i(x),\quad i=1,\cdots,p fi(x),i=1,⋯,p
- 计算 F l a g g ( f ) \mathrm{Flag}_\mathbf{g}(\mathbf{f}) Flagg(f) ,如果 F l a g g ( f ) = 0 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=0 Flagg(f)=0 ,那么 f i ( x ) = f i ( x ) + M i = 1 , ⋯ , p f_i(x)=f_i(x)+M\quad i=1,\cdots,p fi(x)=fi(x)+Mi=1,⋯,p
计算 F l a g g ( f ) \mathrm{Flag}_\mathbf{g}(\mathbf{f}) Flagg(f) 的算法如下:
- 令 F l a g g ( f ) = 1 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=1 Flagg(f)=1
- 若 ∃ i = 1 , ⋯ , p \exists i=1,\cdots,p ∃i=1,⋯,p 使得 f i ( x ) > g i f_i(x)>g_i fi(x)>gi ,那么 F l a g g ( f ) = 0 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=0 Flagg(f)=0
- 若 F l a g g ( f ) = 0 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=0 Flagg(f)=0 ,再令 F l a g g ( f ) = 1 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=1 Flagg(f)=1 ,若 ∃ i = 1 , ⋯ , p \exists i=1,\cdots,p ∃i=1,⋯,p 使得 f i ( x ) < g i f_i(x)<g_i fi(x)<gi ,那么 F l a g g ( f ) = 0 \mathrm{Flag}_\mathbf{g}(\mathbf{f})=0 Flagg(f)=0
3 算法优缺点
3.1 算法优点
g-Dominance作为一个算法插件能够嵌入任意合适的进化算法之中进而引入偏好信息而不会对算法的内容做大幅修改。
3.2 算法缺点
g-Dominance决定的偏好区域大小与参考点和PF的相对距离有密切关系。在极端情况下,若参考点位于PF上,算法的结果将会很差;
因为g-Dominance对种群个体的选择性能不够好,导致g-Dominance实际上对种群进化的压力不高,致使其在高维多目标优化上具有劣势;
g-Dominance实际上破坏了Pareto支配关系,这将导致一些有利于种群进化的个体被舍弃(例如和参考点Pareto相等的个体),这在一定程度上是不利于算法结果的。
论文详情:
Julián Molina, Luis V. Santana, Alfredo G. Hernández-Díaz, Carlos A. Coello Coello, Rafael Caballero,g-dominance: Reference point based dominance for multiobjective metaheuristics,European Journal of Operational Research,Volume 197, Issue 2,2009,Pages 685-692,ISSN 0377-2217,