用虚拟头结点,这样会方便很多。 本题链表操作就比较复杂了,建议大家先看视频,视频里我讲
解了注意事项,为什么需要temp保存临时节点。题目链接/文章讲解/视频讲解: 代码随想录
看到题目只想到前两个节点交换的操作,对于两两交换没有什么好的方法,先看视频学习思路
注意移动cur的写法以及遍历的中止条件,两两交换的逻辑
var swapPairs = function(head) {
//虚拟头节点,指向head
const dummyhead = new ListNode(0, head);
// 定义一个临时指针用来遍历列表
let cur = dummyhead;
while(cur.next!=null&&cur.next.next!=null){
let temp=cur.next
let temp1=cur.next.next.next
cur.next=cur.next.next
cur.next.next=temp
temp.next=temp1
//移动cur
cur=cur.next.next
}
return dummyhead.next
};
19.删除链表的倒数第N个节点
双指针的操作,要注意,删除第N个节点,那么我们当前遍历的指针一定要指向 第N个节点的前一个节点,建议先看视频。
题目链接/文章讲解/视频讲解:代码随想录
双指针的经典应用,如果要删除倒数第n个节点,让fast移动n+1步,然后让fast和slow同时移动,直到fast指向链表末尾。删掉slow所指向的节点的下一个节点就可以了。
var removeNthFromEnd = function(head, n) {
const dummyhead=new ListNode(0,head)
let slow=dummyhead;
let fast=dummyhead;
while(n+1){
fast=fast.next
n--
}
while(fast!=null){
fast=fast.next
slow=slow.next
}
slow.next=slow.next.next
return dummyhead.next
};
面试题 02.07. 链表相交
本题没有视频讲解,大家注意 数值相同,不代表指针相同。
题目链接/文章讲解:代码随想录
题意输入输出没看懂 ,看文章思路如下:
简单来说,就是求两个链表交点节点的指针。 这里同学们要注意,交点不是数值相等,而是指针相等。为了方便举例,假设节点元素数值相等,则节点指针相等。
目前curA指向链表A的头结点,curB指向链表B的头结点。我们求出两个链表的长度,并求出两个
链表长度的差值,然后让curA移动到,和curB 末尾对齐的位置,如图:
此时我们就可以比较curA和curB是否相同,如果不相同,同时向后移动curA和curB,如果遇到
curA == curB,则找到交点。
否则循环退出返回空指针。
根据思路自己写出代码
var getListLen = function(head) {
let len = 0, cur = head;
while(cur) {
len++;
cur = cur.next;
}
return len;
}
var getIntersectionNode = function(headA ,headB) {
let curA=headA,curB=headB;
let lenA=getListLen(headA);
let lenB=getListLen(headB);
if(lenA<lenB){
[curA,curB]=[curB,curA];
[lenA,lenB]=[lenB,lenA];
}
let i=lenA-lenB;
while(i--){
curA=curA.next;
}
while(curA!=null){
if(curA==curB){
return curA
}
curA=curA.next;
curB=curB.next;
}
return null
};
142.环形链表II
算是链表比较有难度的题目,需要多花点时间理解 确定环和找环入口,建议先看视频。
题目链接/文章讲解/视频讲解:代码随想录
没有思路,看视频学习
这道题目,不仅考察对链表的操作,而且还需要一些数学运算。
主要考察两知识点:
- 判断链表是否环
- 如果有环,如何找到这个环的入口
判断链表是否有环
可以使用快慢指针法,分别定义 fast 和 slow 指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。
为什么fast 走两个节点,slow走一个节点,有环的话,一定会在环内相遇呢,而不是永远的错开呢
首先第一点:fast指针一定先进入环中,如果fast指针和slow指针相遇的话,一定是在环中相遇,这是毋庸置疑的。
那么来看一下,为什么fast指针和slow指针一定会相遇呢?
相对于slow来说,fast是一个节点一个节点的靠近slow的,所以fast一定可以和slow重合。
如果有环,如何找到这个环的入口
此时已经可以判断链表是否有环了,那么接下来要找这个环的入口了。
假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z。 如图所示:
那么相遇时: slow指针走过的节点数为: x + y
, fast指针走过的节点数:x + y + n (y + z)
,n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。
因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:
(x + y) * 2 = x + y + n (y + z)
整理公式之后为如下公式:x = (n - 1) (y + z) + z
注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。
先拿n为1的情况来举例,意味着fast指针在环形里转了一圈之后,就遇到了 slow指针了。
当 n为1的时候,公式就化解为 x = z
,
这就意味着,从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是 环形入口的节点。
也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。
让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。
那么 n如果大于1是什么情况呢,就是fast指针在环形转n圈之后才遇到 slow指针。
其实这种情况和n为1的时候 效果是一样的,一样可以通过这个方法找到 环形的入口节点,只不过,index1 指针在环里 多转了(n-1)圈,然后再遇到index2,相遇点依然是环形的入口节点。
var detectCycle = function(head) {
let fast=head
let slow=head
while(fast!=null&&fast.next!=null){
fast=fast.next.next
slow=slow.next
if(fast==slow){
let index1=fast
let index2=head
while(index1!=index2){
index1=index1.next
index2=index2.next
}
return index1
}
}
return null
};