数据结构期末复习

数据结构期末复习

引言

选择题 30分 共15道

应用题 类似离散数学应该 55分

算法设计题 手撕代码 15分

Ch 1-数据结构绪论

基本概念

数据的基本单位是? 数据元素

构成数据元素的不可分割最小单位是? 数据项

什么是算法? 答:算法是对特定问题求解步骤的一种描述,是指令的有限序列

算法的五大特性

输入 输出 有穷性 确定性 可行性

考察重点

image-20211210194817821

数据的存储结构

顺序存储

数据元素之间的逻辑关系由元素的存储位置来表示

链接存储

数据元素之间的逻辑关系用指针来表示

线性表、树、图的特征

线性表:数据元素之间存在着一对一的线性关系

树结构:数据元素之间存在着一对多的层次关系

图结构:数据元素之间存在着多对多的任意关系

常用时空复杂度一览

image-20211210194505170

image-20211210194527846

课后题

Ch 2-线性表

考察重点

image-20211210195944055

顺序存储

使用数组进行实现

存储要点:用一段地址连续的存储单元

​ 依次存储线性表中的数据元素

image-20211210200917656

特点是:随机存取

顺序表的实现直接基于数组进行操作即可

单链表

线性表的链接存储结构

元素之间的逻辑关系使用指针来表示

单链表的实现依赖于动态内存申请(new和delete)

image-20211210201943992

一定要分清头节点和首元结点

头结点:一个工具结点 其本身数据域为空 后继结点为首元结点

首元结点:线性表真正意义上的第一个元素结点

单链表算法的设计模式(重要)

image-20211210203147789

在解答题目时,没有必要使用数据类型模板,直接使用int就可以了大哥

大哥一定要把这个算法的设计模式记住 到时候考试直接照搬就可以了

判空条件

头节点的后继是否为空指针?

注意:在判断时要使用双等号 ==

算法举例:按值查找

image-20211210203321465

插入结点

image-20211210203507988

删除结点

image-20211210203529617

头插

image-20211210203715101

尾插

image-20211210203751730

顺序表和单链表的适用条件

image-20211210203951762

牢记这张图

涉及频繁的插入和删除操作时宜使用单链表

涉及频繁的查找操作时宜使用顺序表

课后题

Ch 3-栈和队列

image-20211211085638786

各自的特点

栈和队列都是操作受限的线性表

栈—后进先出 LIFO

队列—先进先出 FIFO

常用操作也是插入和删除

允许插入和删除的一端称为栈的栈顶

栈的实现有顺序栈(使用数组)和链栈(单链表)两种

队列的实现常用的有顺序队列、链队列、循环队列几种,其中循环队列的相关操作必考!

循环队列

循环队列在实现时会设置两个关键要素,一个是队头位置front,另外一个是队尾位置rear,
循环队列的核心便在于循环意义,也就是在每次操作时针对队列所设置的大小进行取余操作

循环队列的入队操作是要将队尾位置rear在循环意义下加1.然后插入

void CirQueue::EnQueue(int newData)
{
    if((rear+1)%QueueSize==front)
    {
        throw "栈满";
    }
    rear=(rear+1)%QueueSize;	//队尾指针在循环意义下加1
    data[rear]=newData;		//插入新元素
}

同理,栈的出队操作也只需要将队头位置front在循环意义下加1

void CirQueue::DeQueue(int newData)
{
    if(rear==front)
    {
        throw "栈空";
    }
    front=(front+1)%QueueSize;	//队头在循环意义下加1
    return data[front];		    //返回出队前的队头元素
}

判空条件

我们默认顺序栈初始时给定栈顶指针 top=-1,

  • 顺序栈 if(top==-1) 其中top为栈的栈顶索引
  • 链栈 if(top==nullptr) 其中top为栈顶指针
  • 循环队列 if(front==rear) 判断队头队尾是否为同一指针
  • 循环队列如何判满? if((rear+1)%QueueSize==front) 其中QueueSize为给定的队列大小

进制转换

int Turn(int oldData, int n)		//形参为需要转换进制的十进制数和需要转换到的进制
{
	LinkStack s1;  //初始化一个余数栈
	int k = 0;	//位数
	int result = 0;  //返回的最终结果
	while (n <= oldData)		//取余压栈循环体
	{
		//cout << "原被除数为:" << oldData << endl;
		int temp = oldData % n;
		s1.push(temp);
		k++;
		//cout << "余数为:" << temp << endl;
		oldData /= n;
		//cout << "新被除数为:" << oldData << endl;
		//cout << "----------------------" << endl;
	}
	k++;
	//cout << "位数" << k << endl;
	s1.push(oldData);		//最后余数压栈
	while (k != 0)
	{
		result += s1.pop() * pow(10, --k);
	}
	return result;
}

表达式求值

表达式求值这一知识点也非常重要,需要掌握

image-20211211092632571

image-20211211092710349

image-20211211092731631

各自的应用情形

  1. 递归的实现
  2. 表达式求值
  3. 进制转换
  4. 括号匹配
队列

队列的应用应该不作考察

课后题

Ch 4-字符串和多维数组

字符串这一章应该没什么要考的

最多最多考一个next值的书写以及稀疏矩阵的特殊表示(十字链表+三元组)

等到时候咱们线下一块复习的时候看

现在是封校第二天 我们继续复习

字符串的模式匹配算法

BF算法

image-20211216193940136

BF算法运行示例

image-20211216194006920

暴力算法

BF算法的性能之所以较低,主要是因为其在每趟匹配不成功时存在大量回溯,没有利用已经部分匹配的结果。

KMP算法

KMP算法的精髓就在于利用了已经得到的部分匹配信息 关键在于寻找next值

image-20211216194259168

image-20211216194306885

矩阵的压缩存储及表示

小题:记住,稀疏矩阵不属于特殊矩阵

三元组

image-20211216194822820

image-20211216194835450

十字链表

image-20211216194853896

示例

image-20211216194908116

Ch 5-树和二叉树

树的一些术语

树的结构是递归定义的,树的算法也多是递归设计实现的。

在线性结构中,逻辑关系表现为前驱-后继

在树结构中,逻辑关系表现为双亲-孩子

树的逻辑特征:树的结点有固定的父亲,结点不能属于多个子树,且子树之间不能有关系。

  • 节点的度:结点所拥有的子树的个数,如二叉树中结点的度<=2
  • 树的度:树中各结点度的最大值,如二叉树的度为2
  • 叶子结点:度为0的结点,又称终端结点。
  • 孩子结点、双亲结点、兄弟结点等不做赘述
  • 路径:由上往下寻找的过程
  • 在树结构中,路径是唯一的
  • 结点所在层数:根节点的层数为1,向下依次+1
  • 树的深度(高度):树中所有结点的最大层数
  • 树的宽度:书中每一层结点个数的最大值

二叉树基本术语

遍历是二叉树操作的基础!!!

二叉树的特点
  1. 每个结点最多有两棵子树
  2. 二叉树是有序的,其次序不能任意颠倒

左(右)斜树:所有结点都只有左(子)树的二叉树

斜树相当于退化成了线性表结构

满二叉树:所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上的二叉树

满二叉树的特点
  • 叶子只能出现在最下一层
  • 只有度0和度为2的结点
  • 在同样深度的二叉树中结点个数最多
  • 在同样深度的二叉树中叶子结点个数最多+
  • 满二叉树一定是完全二叉树

image-20211216200056487

完全二叉树

完全二叉树:在满二叉树中,从最后一个结点开始,任意个结点得到的二叉树

特点:

  • 叶子结点只能出现在最下两层
  • 完全二叉树中如果有度为1的结点,只可能有1个,且该节点只有左孩子
  • 深度为k的完全二叉树在k-1曾上一定是满二叉树
  • 在同样结点个数的二叉树中,完全二叉树的深度最小

image-20211216200313389

二叉树的性质!!!

  1. 在一颗二叉树中,如果叶子结点数为a,度为2的结点数为b,则有a=b+1

  2. image-20211216200513332

  3. image-20211216200545059

    在此情况下,一定为满二叉树

  4. image-20211216200632767

  5. image-20211216200652311

二叉树的遍历

前、中、后序遍历的基本思想不再赘述 以一张图代为讲解

image-20211216201220436

二叉树的存储结构及算法

二叉树可以使用顺序存储和链式存储两种

二叉树的顺序存储结构一般仅存储完全二叉树

我们的二叉树一般使用二叉链表进行实现

//结点结构体的定义
struct BiNode
{
    /* data */
    int data;
    BiNode *lchild; //左孩子
    BiNode *rchild; //右孩子
};

叶子结点的标志:左右孩子指针均为空

求问:n个结点的二叉链表有多少个空指针?

image-20211216201456817

三叉链表就是在二叉链表中增加一个指向双亲的指针域

二叉链表前序遍历 递归
void BiTree::PreOrder(BiNode *bt)
{
    //递归调用的终止条件
    if (bt == nullptr)
    {
        return;
    }
    else
    {
        //前序遍历: 根节点  左子树  右子树
        cout << bt->data << " "; //输出数据域
        PreOrder(bt->lchild);
        PreOrder(bt->rchild);
    }
}
统计二叉树中叶子结点个数
int BiTree::Leaf(BiNode *bt)
{
    //递归实现
    if (bt == nullptr)
    {
        return 0;
    }
    if (bt->lchild == nullptr && bt->rchild == nullptr)
    {
        return 1;
    }
    return Leaf(bt->lchild) + Leaf(bt->rchild); //递归调用子函数,求子树中叶子结点的个数
}
求二叉树的深度
int BiTree::Height(BiNode *bt)
{
    //求二叉树的高度(深度)
    if (bt == nullptr)
    {
        return 0;
    }
    int i = Height(bt->lchild);
    int j = Height(bt->rchild);
    if(i<j)
    {
        return j+1;
    }
    else
    {
        return i+1;
    }
}
层序遍历 基于队列
void BiTree::LevelOrder()
{
    //层序遍历 基于队列
    BiNode *Q[100]; //所需队列
    BiNode *q = nullptr;

    int front = -1, rear = -1; //队列初始条件
    if (root == nullptr)
    {
        //空树不操作
        return;
    }

    Q[++rear] = root; //根指针入队
    while (front != rear)
    {
        //遍历条件:当队列非空时
        q = Q[++front]; //出队
        cout << q->data << " ";
        if (q->lchild != nullptr)
            Q[++rear] = q->lchild;
        if (q->rchild != nullptr)
            Q[++rear] = q->rchild;
    }
}

线索二叉树!!!

个人看来,线索二叉树中的线索指的就是在不同序遍历情况下,二叉树中结点对应的在遍历序列中的前驱后继关系。

image-20211216201919103

image-20211216201932149

image-20211216201950371

线索二叉树举例

image-20211216202109549

image-20211216202121403

image-20211216202128802

树、森林与二叉树的转换

什么是森林?

image-20211216202342763

树转换为二叉树

image-20211216202425901

注意:

树的前序遍历等价于二叉树的前序遍历!

树的后序遍历等价于二叉树的中序遍历!

森林转换为二叉树

image-20211216202818898

image-20211216202839393

二叉树转换为树(森林)感觉不考

image-20211216202927278

最优二叉树!!!

为结点加上权值

image-20211216203205828

什么是最优二叉树?

最优二叉树又称哈夫曼树

image-20211216203049535

特点
  • 权值越大的叶子结点越靠近根结点
  • 只有度为0和度为2的结点,不存在度为1的结点
哈夫曼算法

image-20211216203345317

依次选取最小的个结点,然后组成树,再递归创建

哈夫曼编码 必考

我们一般使用前缀编码

前缀编码的特点
  • 在一组编码中,任一编码都不是其它任何编码的前缀
哈夫曼编码示例 课后题

题目:

假设用于通信的电文由字符集{a,b,c,d,e,f,g}构成,它们在电文中出现的频率分别为{0.31,0.16,0.10,0.08,0.11,0.20,0.04},请为这7个字符设计哈夫曼编码

image-20211216203615404

课后题补充:

已知一棵度为m的树中有:n1个度为1的结点,n2个度为2的结点…nm个度为m的结点,问该树中共有多少个叶子结点?

答:

(n1*1+n2*2+...+nm*m)-(n1+n2+...+nm)+1

Ch 6-图

图的术语

  • 图:图是由顶点的有穷非空集合和顶点之间边的集合组成
    • 通常用G=(V,E)表示,V为顶点集,E为边集
  • 图分为无向图和有向图
  • 无向图:图中任意两个顶点之间的边都是无向边
  • 权:对边赋予的有意义的数值量
  • 带权图(网图):边上带权的图 作为对比,在树中,权通常赋予结点
  • 稠密图:边数很多的图
  • 稀疏图:边数很少的图
  • 无向完全图:无向图中,任意两个顶点之间都存在边
    • n个顶点的无向完全图中有n*(n-1)/2条边
  • 有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧
    • n个顶点的有向完全图中有n*(n-1)条弧
  • 顶点的度:在无向图中,顶点v的度值得是依附于该顶点的边数
  • 入度:指向该顶点的弧的数目
  • 回路:第一个顶点和最后一个顶点相同的路径
  • 简单路径:序列中顶点不重复出现的路径
  • 简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路
  • 路径长度:对于非带权图为路径上边的个数,对于带权图为路径上边的权值之和

image-20211216205111086

image-20211216205153958

image-20211216205205872

图的核心操作-遍历

深度优先遍历

DFS,Depth First Search

假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

看一张图:

640?wx_fmt=png

上述由7个顶点构成的图的深度优先遍历顺序应该为?

答案是:

ACBEDFG

图的深度优先遍历技术需要借助栈结构,由于递归本身就使用了函数栈的特性,所以无需额外使用其余的栈。

void MGraph::DFTraverse(int v)
{
    cout<<vertex[v]<<" ";
    visited[v]=1;
    for(int j=0;j<vertexNum;j++)
    {
        if(edge[v][j]==1 && visited[j]==0)
        {
            DFTraverse(j);
        }
    }
}
广度优先遍历

BFS,Breadth First Search

广度优先搜索思想:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

640?wx_fmt=png

上述图的广度优先遍历序列为:

ABECDFGH

void MGraph::BFTraverse(int v)
{
    int w,j,Q[MaxSize];     //顺序队列,有点取巧
    int front=-1,rear=-1;
    cout<<vertex[v]<<" ";
    visited[v]=1;
    Q[++rear]=v;
    while(front!=rear)
    {
        //当队列非空时为循环条件
        w=Q[++front];
        for(j=0;j<vertexNum;j++)
        {
            if(edge[w][j]==1 && visited[j]==0)
            {
                cout<<vertex[j]<<" ";
                visited[j]=1;
                Q[++rear]=j;
            }
        }
    }
}

图的存储结构

邻接矩阵

图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维的数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。

设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:

在这里插入图片描述

来看一个实例

在这里插入图片描述

image-20211216205520634

邻接表

图的链式存储结构

image-20211216205820703

基于链表的相关操作

image-20211216205612686

顶点表结点
struct VertexNode   //顶点表结点
{
    char vertex;
    EdgeNode *firstEdge;
};
边表结点
struct EdgeNode     //定义边表结点
{
    int adjvex;     //临接点域(编号)
    EdgeNode *next;
};

邻接矩阵转换为邻接表

void MGraph::Turn()
{
    //初始化指针数组
    for(int i=0;i<MaxSize;i++)
    {
        this->adjlist[i].firstEdge=nullptr;
    }

    //将邻接矩阵转换为邻接表
    EdgeNode *s1=nullptr;   //工具指针

    //先初始化vertex数组  点表 adjlist
    for(int i=0;i<vertexNum;i++)
    {
        //初始化顶点表
        adjlist[i].vertex=vertex[i];
    }

    //转换边表
    for(int i=0;i<vertexNum;i++)
    {
        for(int j=0;j<vertexNum;j++)
        {
            if(edge[i][j]==1)
            {
                cout<<"["<<i<<","<<j<<"]"<<"值为1"<<endl;   //输出方便看到过程
                //如果有边的话就转换成邻接表
                s1=new EdgeNode;
                s1->adjvex=j;
                s1->next=adjlist[i].firstEdge;  //插入表头
                adjlist[i].firstEdge=s1;

            }
        }
    }
}

这一块后面看我其余的文章

邻接表与邻接矩阵的比较

image-20211216205809337

最小生成树

image-20211216205850006

image-20211216205901081

Prim算法

核心思想:以某一点为起点开始,依次找最短边

image-20211216205921507

image-20211216210138367

image-20211216210202327

KrusKal算法

边集的加入条件:最短边 处于不同的连通分量

image-20211216210227279

image-20211216210239173

image-20211216210250679

image-20211216210406618

最小生成树算法比较

image-20211216210425846

最短路径问题

image-20211216210508256

Dijkstra

image-20211216210529165

image-20211216210610030

image-20211216210631729

Floyd-他似乎没怎么讲/。

AOV网与AOE网

AOV–用顶点表示活动,用弧表示活动间的优先关系

AOE–用边表示活动,用顶点表示事件

拓扑序列

image-20211216210838557

image-20211216210855874

关键路径问题

题目

image-20211216211029192

解题

image-20211216211044310

image-20211216211052043

Ch 7-查找技术

查找的分类

静态查找:不涉及插入和删除操作的查找

动态查找:涉及插入和删除操作的查找

查找结构:查找所依赖的数据结构

线性表的查找技术

线性表的查找技术主要有顺序查找折半查找两种

image-20211217115139775

折半查找代码实现

image-20211217115227319

image-20211217115237178

二叉排序树(BST BiSortTree)

在二叉排序树中,要时刻牢记它的特点:

  • 每一个结点的左子树都小于其父亲结点
  • 每一个结点的右子树都大于其父亲结点
  • 每一个结点的左右子树都是二叉排序树

二叉排序树是记录之间满足某种大小关系的二叉树

二叉排序树使用二叉链表进行存储

image-20211217115730895

二叉排序树数据结构定义
struct BiNode
{
	int data;
	BiNode* lchild;	//左子树
	BiNode* rchild;	//右子树
};
class BiSortTree
{
public:
	BiSortTree(int a[], int n);
	~BiSortTree() { Release(root); }
	BiNode* InsertBST(int x) { return InSertBST(root, x); }
	void DeleteBST(BiNode* p, BiNode* f);
	BiNode* SearchBST(int k) { return SearchBST(root, k); }
private:
	BiNode* root;
	BiNode* InSertBST(BiNode* bt, int x);
	BiNode* SearchBST(BiNode* bt, int k);
	void Release(BiNode* bt);
};
二叉排序树的查找

二叉排序树的查找也是一个递归算法

有点像我们课设中的深度优先查找

image-20211217115849896

递归算法

BiNode<int>* BiSortTree::SearchBST(BiNode<int>* bt,int k)
{
    if(bt==nullptr)
    {
        return nullptr;
    }
    if(bt->data==k)
    {
        return bt;	//查找成功
    }
    else if(bt->data>k)
    {
        return SearchBST(bt->lchild,k);	//递归查找左子树
    }
    else
    {
        return SearchBST(bt->rchild,k);	//递归查找右子树
    } 
}
二叉排序树的插入

image-20211217150542889

BiNode<int>* BiSortTree::InsertBST(BiNode<int>* bt,int x)
{
    if(bt==nullptr)
    {
        //初始化新结点 模板类
        BiNode<int>* s=new BiNode<int>;
        s->data=x;
        s->lchild=s->rchild=nullptr;
        
        bt=s;
        return bt;
    }
    else if(bt->data>x)
    {
        //如果新结点数据小于父亲结点
        bt->lchild=InsertBST(bt->lchild,x);
    }
    else
    {
        //如果新结点数据大于父亲结点
        bt->rchild=InsertBST(bt->rchild,x);
    }
}
二叉排序树的构造

image-20211217151135594

二叉排序树的删除(重要!!)

二叉排序树结点的删除要考虑多种情况

因为二叉树的结点在删除结点后,仍然要保持二叉排序树的特性。

那么你还记得二叉排序树的特性吗?

  • 二叉排序树左边的结点一定小于其双亲结点
  • 二叉排序树右边的结点一定大于其双亲结点
  • 二叉排序树中每个结点的左右子树都是二叉排序树
  • 二叉排序树和二叉树一样也是通过递归进行定义的

image-20211217151303466

删除情形1

情形1-被删除的结点是叶子结点

image-20211217151912097

删除情形2

被删除的结点只有左子树或者只有右子树

image-20211217152027269

删除情形3

被删除的结点既有左子树也有右子树

image-20211217160902477

特点:以其左子树中的最大值结点替换之,然后再删除该结点。

但是要考虑特殊情况:左子树中的最大值结点是被删结点的孩子

image-20211217161116686

void BiSortTree::DeleteBST(BiNode<int>* p,BiNode<int>* f)
{
    if((p->lchild==nullptr)&&(p->rchild==nullptr))
    {
        //如果p为叶子结点
        f->lchild=nullptr;
        delete p;
        return;
    }
    if(p->rchild==nullptr)
    {
        //p只有左子树
        f->lchild=p->lchild;
        delete p;
        return;
    }
    if(p->lchild==nullptr)
    {
        //p只有右子树
        f->lchild=p->rchild;
        delete p;
        return;
    }
   	//情形:p的左右子树均不空
    while(s->rchild!=nullptr)
    {
        //查找左子树的最右下结点
        par=s;
        s=s->rchild;
    }
    p->data=s->data;
    if(par==p)
    {
        par->lchild=s->lchild;
    }
    else
    {
        par->rchild=s->lchild;
    }
    delete s;
}
二叉排序树的性能分析

二叉排序树的查找性能取决于树的深度

二叉排序树的比较次数不超过树的深度

平衡二叉树 次重点

image-20211217161937390

平衡因子的计算

某结点的平衡因子=该结点的左子树深度-该结点的右子树深度

某结点的平衡因子只能够是1、0、-1

注意:在计算深度时,不能算上本结点,因为计算的是子树的深度

平衡二叉树的性质
  • 根结点的左子树和右子树的深度最多相差1
  • 根结点的左子树和右子树也都是平衡二叉树
  • 结点的平衡因子只能够是1、0、-1

image-20211217162755812

平衡调整方法

扁担原理:将根结点看成是扁担中肩膀的位置

旋转优先:旋转下来的结点作为新根结点的孩子

image-20211217163200069

LL

image-20211217163324135

RR

image-20211217163342630

LR

image-20211217163359886

RL

image-20211217163519395

B树

B树–一棵m阶的B树或者为空树,或者为满足下列特性的m叉树:

  • 每个结点至多有m棵子树
  • 根结点至少有两棵子树
  • 除根结点和叶子结点外,所有结点至少有 m/2棵子树
  • image-20211217163715495
  • image-20211217163733143
B树的插入(定位+分裂/提升)

image-20211217164619138

image-20211217164718406

image-20211217164752184

image-20211217164805317

image-20211217164837953

散列

散列基本概念

散列是一种面向查找的存储结构

散列可以理解为C++中的字典

  • 散列的基本思想:在记录的关键码和存储地址之间建立一个确定的对应的关系,通过计算得到待查记录的地址。
  • 散列表:采用散列技术存储查找集合的连续存储空间
  • 散列函数:将关键码映射为散列表中适当存储位置的函数
  • 散列地址:由散列函数所得的存储地址
散列的关键问题-冲突

冲突:如果两个不同的关键码指向了同一散列地址,则称产生了冲突

散列函数

散列函数设计的原则

  1. 计算简单
  2. 地址均匀
常见的散列函数
  1. 直接定址法
  2. 平方取中法
    1. image-20211217165401656
  3. 除留余数法 H(key)=key mod p
开放定址法

开放定址法主要有线性探测法和二次探测法

image-20211217165521056

线性探测法

线性探测法的核心思想:从冲突位置的下一个位置起,依次寻找空的散列地址。

堆积:非同义词对同一个散列地址争夺的现象

image-20211217165720223

二次探测法

二次探测法的核心思想:以冲突位置为中心,跳跃式寻找空的散列地址

image-20211217165956685

二次探测法相比线性探测法而言能够有效减少堆积的产生。

拉链法处理冲突

image-20211217170108033

散列表的查找性能

image-20211217170137900

image-20211217170148988

开散列表与闭散列表的比较

image-20211217170218075

Ch 8-排序技术

排序基本概念

image-20211217172047491

image-20211217172127511

image-20211217172140296

排序算法还分为内排序和外排序

内排序:在排序的整个过程中,待排序的所有记录全部放在内存中

外排序:待排序的记录个数较多,整个排序过程需要在内外存之间多次交换数据才能得到排序的结果

排序算法类的定义

image-20211217184844030

插入排序

直接插入排序 稳定

直接插入排序算法是一种稳定的排序算法

关键问题:在插入第i(i>1)个记录时,前面的i-1个记录已经排好序

image-20211217184650655

//直接插入排序
void Sort::InsertSort()
{
    int i,j,temp;
    for(i=1;i<length;i++)
    {
        temp=data[i];
        j=i-1;
        while(j>=0&&temp<data[j])
        {
            data[j+1]=data[j];
            j--;
        }
        data[j+1]=temp;
    }
}

image-20211217185052183

希尔排序

希尔排序是一种不稳定排序算法

我对于希尔排序的理解就是局部的直接插入排序

image-20211217185152906

image-20211217185743583

image-20211217185754301

void Sort::ShellSort()
{
    int d,i,j,temp;
    //增量为d进行直接插入排序
    for(d=length/2;d>=1;d=d/2)
    {
        for(i=d;i<length;i++)
        {
            //进行一趟希尔排序
            temp=data[i];	//暂存待插入记录
            for(j=i-d;j>=0&&temp<data[j];j=j-d)
            {
                data[j+d]=data[j];
            }
            data[j+d]=temp;
        }
    }
}

image-20211217190023447

交换排序

交换排序,顾名思义,其核心思想就在于交换

交换排序是一种稳定的排序算法

在待排序列中选两个记录,将它们的关键码相比较,如果反序(即排列顺序与排序后的次序正好相反)。则交换它们的存储位置

起泡排序

基本思想:两两比较相邻记录,如果反序则交换,直到没有反序的记录为止。

void Sort::BubbleSort()
{
	int j,exchange,bound,temp;
    exchange=length-1;	//第一趟起泡排序的区间是[0~length-1]
    while(exchange!=0)
    {
        bound=exchange;
        exchange=0;
        for(j=0;j<bound;j++)
        {
            //一趟起泡排序的区间是[0~bound]
            if(data[j]>data[j+1])
            {
                temp=data[j];
                data[j]=data[j+1];
                data[j+1]=temp;
                exchange=j;	//记载每一次记录交换的位置
            }
        }
    }
}

image-20211217190839759

快速排序 重要

快速排序是一种不稳定的排序算法

快速排序的基本思想:

选定一个轴值,将待排序记录划分成两部分,左侧记录均小于或等于轴值,右侧记录均大于或等于轴值,然后分别对这两部分重复上述过程,直到整个序列有序。

一次划分:以轴值为基准将无序序列划分为两部分

关键问题在于如何选择轴值和实现分隔

image-20211217191123704

一次划分算法

image-20211217191151687

如何处理分割得到的两个待排序子序列?

对分割得到的两个子序列递归地执行快速排序

算法描述

image-20211217191250324

image-20211217191302277

选择排序

选择排序的主要操作就是选择

选择排序的主要思想:每趟排序在当前待排序序列中选出关键码最小的记录,添加到有序序列中。

简单选择排序

简单选择排序是一种不稳定的排序算法

void Sort::SelectSort()
{
    int i,j,index,temp;
    for(i=0;i<length;i++)
    {
        index=i;
        for(j=i+1;i<length-1;j++)
        {
         	if(data[j]<data[index])
       	 	{
            	index=j;
        	}   
        }
        if(index!=i)
        {
            temp=data[i];
            data[i]=data[index];
            data[index]=temp;
        }
    }
}

image-20211217191842100

堆排序 重要

堆排序是一种不稳定的排序算法

什么是堆?

image-20211217191945043

堆排序的基本思想

image-20211217192143524

堆调整算法 Sift

image-20211217192206621

image-20211217192216868

void Sort::HeapSort()
{
    int i,temp;
    //建立堆:从最后一个分支结点至根结点调整
    for(i=length/2-1;i>=0;i--)
    {
        Sift(i,length-1);
    }
    for(i=1;i<length;i++)
    {
        temp=data[0];
        data[0]=data[length-i];
        data[length-i]=temp;
        Sift(0,length-i-1);	//重建堆
    }
}

image-20211217192522143

归并排序

归并排序的主要操作是归并

主要思想:将若干有序序列逐步归并,最终得到一个有序序列

归并:将两个或两个以上的有序序列合并成一个有序序列的过程。

image-20211217193253123

这一块截图不太方便

回头直播间里教大哥吧

各种排序算法的比较

image-20211217193542319

image-20211217193554100

image-20211217193609644

在当前待排序序列中选出关键码最小的记录,添加到有序序列中。

简单选择排序

简单选择排序是一种不稳定的排序算法

void Sort::SelectSort()
{
    int i,j,index,temp;
    for(i=0;i<length;i++)
    {
        index=i;
        for(j=i+1;i<length-1;j++)
        {
         	if(data[j]<data[index])
       	 	{
            	index=j;
        	}   
        }
        if(index!=i)
        {
            temp=data[i];
            data[i]=data[index];
            data[index]=temp;
        }
    }
}

image-20211217191842100

堆排序 重要

堆排序是一种不稳定的排序算法

什么是堆?
image-20211217191945043

堆排序的基本思想

image-20211217192143524

堆调整算法 Sift

image-20211217192206621
image-20211217192216868

void Sort::HeapSort()
{
    int i,temp;
    //建立堆:从最后一个分支结点至根结点调整
    for(i=length/2-1;i>=0;i--)
    {
        Sift(i,length-1);
    }
    for(i=1;i<length;i++)
    {
        temp=data[0];
        data[0]=data[length-i];
        data[length-i]=temp;
        Sift(0,length-i-1);	//重建堆
    }
}

image-20211217192522143

归并排序

归并排序的主要操作是归并

主要思想:将若干有序序列逐步归并,最终得到一个有序序列

归并:将两个或两个以上的有序序列合并成一个有序序列的过程。

image-20211217193253123

这一块截图不太方便

回头直播间里教大哥吧

各种排序算法的比较

image-20211217193542319

image-20211217193554100

image-20211217193609644

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值