tensorflow2学习笔记

本文介绍了TensorFlow2在深度学习中的应用,包括前向传播、损失函数、梯度下降、反向传播等基本概念,详细讲解了张量、数据类型、常用水准函数的使用,并展示了神经网络的搭建和优化过程,最后通过鸢尾花数据集实现了分类任务,探讨了参数优化器的作用。
摘要由CSDN通过智能技术生成

tensorflow2学习笔记

  • 当今人工智能主流方向——连接主义
  • 前向传播
  • 损失函数
  • 梯度下降
  • 学习率
  • 反向传播更新函数
  • Tensorflow2常用函数

人工智能三学派:

  • 行为主义:基于控制论,构建感知-运动控制系统。
  • 符号主义:基于算术逻辑表达式,求解问题时先把问题描述为表达式,再求解表达式。(可用公式描述、实现理性思维)
  • 连接主义:仿生学,模仿神经元连接

张量(Tensor):多维数组(列表)

维数名字
0-D0标量 scalar1,2,3
1-D1向量 vectorv=[1,2,3]
2-D2矩阵 matrixm=[[1,2,3],[4,5,6]]
n-Dn张量 tensort=[[[…n个]]]

张量可以表示0阶到n阶数组,元素用行号和列号引到

Tensorflow的数据类型:

tf.int32, tf.float 32, tf.float 64

tf.bool

tf.constant([True,False])

tf.string

tf.constant(“hello,world”)

创建一个张量

tf.constant(张量内容,dtype=数据类型)

import tensorflow as tf
a=tf.constant([1,5],dtype=tf.int64)
print(a)
print(a.dtype)
print(a.shape)
运行结果:
tf.Tensor([1 5], shape=(2,), dtype=int64)
<dtype: 'int64'>
(2,)

*看张量维数就看逗号隔开了几个数字 隔开了几个数字就是几维,2表示该张量有两个元素*

将numpy的数据类型转换为Tensor数据类型

td.convert_to_tensor(数据名,dtype=数据类型)

import tensorflow as tf
import numpy as np
a=np.arange(0,5)
b=tf.convert_to_tensor(a,dtype=tf.int64)
print(a)
print(b)
运行结果:
[0 1 2 3 4]
tf.Tensor([0 1 2 3 4], shape=(5,), dtype=int64)
创建全为0的张量

tf.zeros(维度)

创建全为1的张量

tf.ones(维度)

创建全为指定值的张量

tf.fill(维度,指定值)

a=tf.zeros([2,3])
b=tf.ones(4)
c=tf.fill([2,2],9)
print(a)
print(b)
print(c)
运行结果为:
tf.Tensor(
[[0. 0. 0.]
 [0. 0. 0.]], shape=(2, 3), dtype=float32)
tf.Tensor([1. 1. 1. 1.], shape=(4,), dtype=float32)
tf.Tensor(
[[9 9]
 [9 9]], shape=(2, 2), dtype=int32)

维度:

*一维——直接写个数*

*二维——用[行,列]*

*三维——用[n,j,k...]*

生成正态分布的随机数,默认值均为0,标准差为1

tf.random.normal(维度,mean=均值,stddev=标准差)

生成截断式正态分布的随机数

tf.random.truncaten_normal(,mean=均值,stddev=标准差)

在tf.random.truncaten_normal中如果随机生成数据的取值在()之外则重新生成,保证了生成值在均值附近

d=tf.random.normal([2,2],mean=0.5,stddev=1
print(d)
e=tf.random.truncated_normal([2,2],mean=0.5,stddev=1)
print(e)
运行结果:
tf.Tensor(
[[ 0.6701759   1.6724517 ]
 [-0.07118636 -0.82787395]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[-0.16445047  0.14365721]
 [ 1.0051086  -0.19248289]], shape=(2, 2), dtype=float32)
生成均匀分布随机数

tf.random.uniform(维度,munval=最小值,maxval=最大值)

import tensorflow as tf
f=tf.random.uniform([2,2],minval=0,maxval=1)
print(f)
运行结果:
tf.Tensor(
[[0.9287708  0.6684954 ]
 [0.66665196 0.3233919 ]], shape=(2, 2), dtype=float32)

Process finished with exit code 0

*生成的均匀分布随机数是一个前闭后开区间[minval,maxval)*

强制tensor转化为该数据类型

tf.cast(张量名,dtype=数据类型)

常用函数

tf.reduce_min(张量名)

计算张量维度上的最小值

tf.reduce_max(张量名)

计算张量维度上的最大值


import tensorflow as tf
x1=tf.constant([1.,2.,3.],dtype=tf.float64)
print(x1)
x2=tf.cast(x1,tf.int32)
print(x2)
print(tf.reduce_min(x2),tf.reduce_max(x2))
运行结果:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32) tf.Tensor(3, shape=(), dtype=int32)
axis

通过调整axis来控制执行维度

axis=0表示跨行

axis=1表示跨列

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vdjIdprp-1619703424805)(C:\Users\weijie\AppData\Roaming\Typora\typora-user-images\image-20210218214033757.png)]

tf.GradientTape

实现某个函数对指定参数的求导运算

with结构记录计算过程,gradient求出张量的梯度

with tf.GradientTape() as tape:
若干个计算过程
grad=tape.gradient(函数,对谁求导)
import tensorflow as tf
with tf.GradientTape() as tape:
	w=tf.Variable(tf.constant(3.0))
	loss=tf.pow(w,2)
grad=tape.gradient(loss,w)
print(grad)
tf.Tensor(6.0, shape=(), dtype=float32)
enumerate

枚举,可枚举出每个元素,并在元素前配置索引号

enumerate(列表名)
import tensorflow as tf
seq=['one','tow','three']
for i,element in enumerate(seq):
	print(i,element)
0 one
1 tow
2 three
tf.one_hot(独热码)

标记类别:1表示是,0表示非

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6HRC3rIp-1619703424810)(C:\Users\weijie\AppData\Roaming\Typora\typora-user-images\image-20210219192245967.png)]

函数tf.one_hot(带转换数据,depth=几分类)

import tensorflow as tf
classes=3
labels=tf.constant([0,1,2])#输入的单元值最小为0,最大为2
output=tf.one_hot(labels,depth=classes)
print(output)

tf.Tensor(
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]], shape=(3, 3), dtype=float32)
tf.nn.softmax

***Softmax(yi)=ft.nn.softmax(x)***将输出值变为0~1之间的概率值,使输出符合概率分布

import tensorflow as tf
y=tf.constant([1.01,2.01,-0.66])
y_pro=tf.nn.softmax(y)
print("After softmax,y_pro is:",y_pro)
运行结果:
After softmax,y_pro is: tf.Tensor([0.25598174 0.69583046 0.04818781], shape=(3,), dtype=float32)

他们之间的和为一

assign_sub
  • 赋值操作,更新参数的值并返回
  • 调用assign_sub前,先用tf.Variable定义变量w为可训练(可自更新)

w.assign_sub

import tensorflow as tf
w=tf.Variable(4)
w.assign_sub(1)
print(w)
运行结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>

鸢尾花数据集(Iris)

从sklearn包datasets读入数据集,语法为:

from sklearn.datasets import load_iris

x_data=datasets.load_iris().data 返回iris数据集所有输入特征

y_data=datasets.load_iris().target 返回iris数据集所有标签

from sklearn import datasets
from pandas import DataFrame
import pandas as pd

x_data = datasets.load_iris().data  # .data返回iris数据集所有输入特征
y_data = datasets.load_iris().target  # .target返回iris数据集所有标签
print("x_data from datasets: \n", x_data)
print("y_data from datasets: \n", y_data)

x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度']) # 为表格增加行索引(左侧)和列标签(上方)
pd.set_option('display.unicode.east_asian_width', True)  # 设置列名对齐
print("x_data add index: \n", x_data)

x_data['类别'] = y_data  # 新加一列,列标签为‘类别’,数据为y_data
print("x_data add a column: \n", x_data)

#类型维度不确定时,建议用print函数打印出来确认效果

神经网络实现鸢尾花分类

准备数据

  • 数据集读入
  • 数据集乱序
  • 生成训练集和测试集(即x_train/y_train,x_test/y_test)
  • 配成(输入特征,标签)对,每次读入一小撮(batch)

搭建网络

  • 定义神经网路中所有可训练参数

参数优化

  • 嵌套循环迭代,with结构更新参数,显示当前loss

测试效果

  • 计算当前参数向前传播后的准确率,,显示当前的acc

acc/loss可视化

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

神经网络参数优化器

SGD
SGDM

含momentum的SGD,在SGD基础上增加一阶动量

搭建神经网络六步法

  • import
  • train,test
  • model = tf.keras.models.Sequential
  • model.compile
  • model.fit
  • model.summary

ults值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像

绘制 Accuracy 曲线

plt.title(‘Acc Curve’) # 图片标题
plt.xlabel(‘Epoch’) # x轴变量名称
plt.ylabel(‘Acc’) # y轴变量名称
plt.plot(test_acc, label=“ A c c u r a c y Accuracy Accuracy”) # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()


## 神经网络参数优化器

#### SGD

#### SGDM

含momentum的SGD,在SGD基础上增加一阶动量

## 搭建神经网络六步法

- **import**
- **train,test**
- **model = tf.keras.models.Sequential**
- **model.compile**
- **model.fit**
- **model.summary**

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值